ollama
v0.5.9
Published
Ollama Javascript library
Downloads
328,563
Keywords
Readme
Ollama JavaScript Library
The Ollama JavaScript library provides the easiest way to integrate your JavaScript project with Ollama.
Getting Started
npm i ollama
Usage
import ollama from 'ollama'
const response = await ollama.chat({
model: 'llama3.1',
messages: [{ role: 'user', content: 'Why is the sky blue?' }],
})
console.log(response.message.content)
Browser Usage
To use the library without node, import the browser module.
import ollama from 'ollama/browser'
Streaming responses
Response streaming can be enabled by setting stream: true
, modifying function calls to return an AsyncGenerator
where each part is an object in the stream.
import ollama from 'ollama'
const message = { role: 'user', content: 'Why is the sky blue?' }
const response = await ollama.chat({ model: 'llama3.1', messages: [message], stream: true })
for await (const part of response) {
process.stdout.write(part.message.content)
}
Create
import ollama from 'ollama'
const modelfile = `
FROM llama3.1
SYSTEM "You are mario from super mario bros."
`
await ollama.create({ model: 'example', modelfile: modelfile })
API
The Ollama JavaScript library's API is designed around the Ollama REST API
chat
ollama.chat(request)
request
<Object>
: The request object containing chat parameters.model
<string>
The name of the model to use for the chat.messages
<Message[]>
: Array of message objects representing the chat history.role
<string>
: The role of the message sender ('user', 'system', or 'assistant').content
<string>
: The content of the message.images
<Uint8Array[] | string[]>
: (Optional) Images to be included in the message, either as Uint8Array or base64 encoded strings.
format
<string>
: (Optional) Set the expected format of the response (json
).stream
<boolean>
: (Optional) When true anAsyncGenerator
is returned.keep_alive
<string | number>
: (Optional) How long to keep the model loaded.tools
<Tool[]>
: (Optional) A list of tool calls the model may make.options
<Options>
: (Optional) Options to configure the runtime.
Returns:
<ChatResponse>
generate
ollama.generate(request)
request
<Object>
: The request object containing generate parameters.model
<string>
The name of the model to use for the chat.prompt
<string>
: The prompt to send to the model.suffix
<string>
: (Optional) Suffix is the text that comes after the inserted text.system
<string>
: (Optional) Override the model system prompt.template
<string>
: (Optional) Override the model template.raw
<boolean>
: (Optional) Bypass the prompt template and pass the prompt directly to the model.images
<Uint8Array[] | string[]>
: (Optional) Images to be included, either as Uint8Array or base64 encoded strings.format
<string>
: (Optional) Set the expected format of the response (json
).stream
<boolean>
: (Optional) When true anAsyncGenerator
is returned.keep_alive
<string | number>
: (Optional) How long to keep the model loaded.options
<Options>
: (Optional) Options to configure the runtime.
- Returns:
<GenerateResponse>
pull
ollama.pull(request)
request
<Object>
: The request object containing pull parameters.model
<string>
The name of the model to pull.insecure
<boolean>
: (Optional) Pull from servers whose identity cannot be verified.stream
<boolean>
: (Optional) When true anAsyncGenerator
is returned.
- Returns:
<ProgressResponse>
push
ollama.push(request)
request
<Object>
: The request object containing push parameters.model
<string>
The name of the model to push.insecure
<boolean>
: (Optional) Push to servers whose identity cannot be verified.stream
<boolean>
: (Optional) When true anAsyncGenerator
is returned.
- Returns:
<ProgressResponse>
create
ollama.create(request)
request
<Object>
: The request object containing create parameters.model
<string>
The name of the model to create.path
<string>
: (Optional) The path to the Modelfile of the model to create.modelfile
<string>
: (Optional) The content of the Modelfile to create.stream
<boolean>
: (Optional) When true anAsyncGenerator
is returned.
- Returns:
<ProgressResponse>
delete
ollama.delete(request)
request
<Object>
: The request object containing delete parameters.model
<string>
The name of the model to delete.
- Returns:
<StatusResponse>
copy
ollama.copy(request)
request
<Object>
: The request object containing copy parameters.source
<string>
The name of the model to copy from.destination
<string>
The name of the model to copy to.
- Returns:
<StatusResponse>
list
ollama.list()
- Returns:
<ListResponse>
show
ollama.show(request)
request
<Object>
: The request object containing show parameters.model
<string>
The name of the model to show.system
<string>
: (Optional) Override the model system prompt returned.template
<string>
: (Optional) Override the model template returned.options
<Options>
: (Optional) Options to configure the runtime.
- Returns:
<ShowResponse>
embed
ollama.embed(request)
request
<Object>
: The request object containing embedding parameters.model
<string>
The name of the model used to generate the embeddings.input
<string> | <string[]>
: The input used to generate the embeddings.truncate
<boolean>
: (Optional) Truncate the input to fit the maximum context length supported by the model.keep_alive
<string | number>
: (Optional) How long to keep the model loaded.options
<Options>
: (Optional) Options to configure the runtime.
- Returns:
<EmbedResponse>
ps
ollama.ps()
- Returns:
<ListResponse>
abort
ollama.abort()
This method will abort all streamed generations currently running.
All asynchronous threads listening to streams (typically the for await (const part of response)
) will throw an AbortError
exception
Custom client
A custom client can be created with the following fields:
host
<string>
: (Optional) The Ollama host address. Default:"http://127.0.0.1:11434"
.fetch
<Object>
: (Optional) The fetch library used to make requests to the Ollama host.
import { Ollama } from 'ollama'
const ollama = new Ollama({ host: 'http://127.0.0.1:11434' })
const response = await ollama.chat({
model: 'llama3.1',
messages: [{ role: 'user', content: 'Why is the sky blue?' }],
})
Building
To build the project files run:
npm run build