npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

oll

v0.0.1

Published

Online learning library using oll

Downloads

13

Readme

node-oll

はじめに

oll (Online-Learning Library: http://code.google.com/p/oll/) の node.js アドオンです。 ライセンスは oll に準拠します。

インストール

$ npm install oll

使い方

アルゴリズムの選択

var oll = require('./build/Release/oll');
var Perceptron  = new oll.P();
// var ConfidenceWeighted = new oll.CW();

といった具合にアルゴリズムを選択することが出来ます。使用できるアルゴリズムは下記になります。

P   : Perceptron
AP  : Averaged Perceptron
PA  : Passive Agressive
PA1 : Passive Agressive I
PA2 : Passive Agressive II
PAK : Kernelized Passive Agressive
CW  : Confidence Weighted

パラメータの指定

コンストラクタに引数を渡すことで初期値を指定することが出来ます。

var Perceptron  = new oll.P({C: 2.0, bias: 1.0});

C は oll_train の -C パラメータに相当し、デフォルトで 1.0、bias は -b パラメータに相当し、デフォルトは 0.0 です。

学習とテスト、保存と読み込み

次のように学習とテスト、及び学習結果の保存と読み込みをすることができます。

var oll = require('oll');
var PA1  = new oll.PA1();

// 学習とテスト
PA1.add(true,  '0:1.0  1:2.0 2:-1.0');
PA1.add(false, '0:-0.5 1:1.0 2:-0.5');
console.log(PA1.test('0:1.0 1:1.0')); // 0.1714285910129547

// 学習結果をファイルへ保存
PA1.save('test.dat');

var PA1_2 = new oll.PA1();
PA1_2.load('test.dat');
console.log(PA1_2.test('0:1.0 1:1.0')); // 0.1714285910129547

また、学習のさせかたは以下の形式でも可能です。

PA1.add('+1 0:1.0  1:2.0 2:-1.0');
PA1.add('-1 0:-0.5 1:1.0 2:-0.5');

詳細

その他詳細は http://d.hatena.ne.jp/hecomi/ をご参照下さい。