npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

oled-rpi-i2c-bus

v1.1.4

Published

NodeJS module for controlling oled devices on the Raspbery Pi (including the SSD1306 and SH1106 OLED screens)

Downloads

131

Readme

‘npm version’ ‘downloads over month’

OLED JS Pi over i2c-bus

What is this?

This is fork of package oled-js-pi that works thru i2c-bus package and not use package i2c.

A NodeJS driver for I2C/SPI compatible monochrome OLED screens; to be used on the Raspberry Pi! Works with 128 x 32, 128 x 64 and 96 x 16 sized screens, of the SSD1306/SH1106 OLED/PLED Controller (read the datasheet here).

This based on the Blog Post and code by Suz Hinton - Read her blog post about how OLED screens work!

OLED screens are really cool - now you can control them with JavaScript!

Install

Raspberry Pi allows for software I2C. To enable software I2C, add dtoverlay=i2c-gpio,bus=3 to /boot.config.txt. The software I2C would be available on bus no 3 where the SDA is on pin GPIO23/BCM 16 and SCK is on pun GPIO24/BCM 18.

If you haven't already, install NodeJS.

npm install oled-i2c-bus

For SH1106, if you get an error:

"Error: , Remote I/O error"

You might have to lower the baudrate by adding the following line to /boot/config.txt and rebooting the Pi

dtparam=i2c_baudrate=10000

This is a known issue with Raspberry Pi as noted in Raspberry Pi I2C hardware bug. Alternatively, use software I2C.

I2C screens

Hook up I2C compatible oled to the Raspberry Pi. Pins: SDA and SCL

I2C example

var i2c = require('i2c-bus');
var oled = require('oled-i2c-bus');

var opts = {
  width: 128,
  height: 64,
  address: 0x3D,
  bus: 1,
  driver:"SSD1306"
};

var i2cbus = i2c.openSync(opts.bus)
var oled = new oled(i2cBus, opts);

// do cool oled things here

Wait, how do I find out the I2C address of my OLED screen?

Check your screen's documentation...

Available methods

clearDisplay

Fills the buffer with 'off' pixels (0x00). Optional bool argument specifies whether screen updates immediately with result. Default is true.

Usage:

oled.clearDisplay();

dimDisplay

Lowers the contrast on the display. This method takes one argument, a boolean. True for dimming, false to restore normal contrast.

Usage:

oled.dimDisplay(true|false);

invertDisplay

Inverts the pixels on the display. Black becomes white, white becomes black. This method takes one argument, a boolean. True for inverted state, false to restore normal pixel colors.

Usage:

oled.invertDisplay(true|false);

turnOffDisplay

Turns the display off.

Usage:

oled.turnOffDisplay();

turnOnDisplay

Turns the display on.

Usage:

oled.turnOnDisplay();

drawPixel

Draws a pixel at a specified position on the display. This method takes one argument: a multi-dimensional array containing either one or more sets of pixels.

Each pixel needs an x position, a y position, and a color. Colors can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.

Optional bool as last argument specifies whether screen updates immediately with result. Default is true.

Usage:

// draws 4 white pixels total
// format: [x, y, color]
oled.drawPixel([
	[128, 1, 1],
	[128, 32, 1],
	[128, 16, 1],
	[64, 16, 1]
]);

drawLine

Draws a one pixel wide line.

Arguments:

  • int x0, y0 - start location of line
  • int x1, y1 - end location of line
  • int color - can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.

Optional bool as last argument specifies whether screen updates immediately with result. Default is true.

Usage:

// args: (x0, y0, x1, y1, color)
oled.drawLine(1, 1, 128, 32, 1);

fillRect

Draws a filled rectangle.

Arguments:

  • int x0, y0 - top left corner of rectangle
  • int w, h - width and height of rectangle
  • int color - can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.

Optional bool as last argument specifies whether screen updates immediately with result. Default is true.

Usage:

// args: (x0, y0, x1, y1, color)
oled.fillRect(1, 1, 10, 20, 1);

drawBitmap

Draws a bitmap using raw pixel data returned from an image parser. The image sourced must be monochrome, and indexed to only 2 colors. Resize the bitmap to your screen dimensions first. Using an image editor or ImageMagick might be required.

Optional bool as last argument specifies whether screen updates immediately with result. Default is true.

Tip: use a NodeJS image parser to get the pixel data, such as pngparse. A demonstration of using this is below.

Example usage:

npm install pngparse
var pngparse = require('pngparse');

pngparse.parseFile('indexed_file.png', function(err, image) {
	oled.drawBitmap(image.data);
});

This method is provided as a primitive convenience. A better way to display images is to use NodeJS package png-to-lcd instead. It's just as easy to use as drawBitmap, but is compatible with all image depths (lazy is good!). It will also auto-dither if you choose. You should still resize your image to your screen dimensions. This alternative method is covered below:

npm install png-to-lcd
var pngtolcd = require('png-to-lcd');

pngtolcd('nyan-cat.png', true, function(err, bitmap) {
  oled.buffer = bitmap;
  oled.update();
});

drawRGBAImage

Draw an RGBA coded image at specific coordinates. This only supports a monochrome OLED so transparent pixels must be 100% transparent, off pixels should have an RGB value of (0, 0, 0), and pixels with any color value will be considered on.

Use a library such as pngjs to read a png file into the required rgba data structure.

Example:

const fs = require('fs');
const PNG = require('pngjs').PNG;
const i2c = require('i2c-bus');
const oled = require('oled-i2c-bus');

var i2cBus = i2c.openSync(0);

var opts = {
  width: 128,
  height: 64,
  address: 0x3C
};

var display = new oled(i2cBus, opts);

display.clearDisplay();
display.turnOnDisplay();

fs.createReadStream('./test.png')
.pipe(new PNG({ filterType: 4 }))
.on('parsed', function () {
  setInterval(() => { drawImage(this) }, 1000);
});

function drawImage(image) {
  let x = Math.floor(Math.random() * (display.WIDTH) - image.width / 2);
  let y = Math.floor(Math.random() * (display.HEIGHT) - image.height / 2);
  display.drawRGBAImage(image, x, y);
}

startScroll

Scrolls the current display either left or right. Arguments:

  • string direction - direction of scrolling. 'left' or 'right'
  • int start - starting row of scrolling area
  • int stop - end row of scrolling area

Usage:

// args: (direction, start, stop)
oled.startscroll('left', 0, 15); // this will scroll an entire 128 x 32 screen

stopScroll

Stops all current scrolling behaviour.

Usage:

oled.stopscroll();

setCursor

Sets the x and y position of 'cursor', when about to write text. This effectively helps tell the display where to start typing when writeString() method is called.

Call setCursor just before writeString().

Usage:

// sets cursor to x = 1, y = 1
oled.setCursor(1, 1);

writeString

Writes a string of text to the display.
Call setCursor() just before, if you need to set starting text position.

Arguments:

  • obj font - font object in JSON format (see note below on sourcing a font)
  • int size - font size, as multiplier. Eg. 2 would double size, 3 would triple etc.
  • string text - the actual text you want to show on the display.
  • int color - color of text. Can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.
  • bool wrapping - true applies word wrapping at the screen limit, false for no wrapping. If a long string without spaces is supplied as the text, just letter wrapping will apply instead.

Optional bool as last argument specifies whether screen updates immediately with result. Default is true.

Before all of this text can happen, you need to load a font buffer for use. A good font to start with is NodeJS package oled-font-5x7.

Usage:

npm install oled-font-5x7
var font = require('oled-font-5x7');

// sets cursor to x = 1, y = 1
oled.setCursor(1, 1);
oled.writeString(font, 1, 'Cats and dogs are really cool animals, you know.', 1, true);

Checkout https://www.npmjs.com/package/oled-font-pack for all-in-one font package.

update

Sends the entire buffer in its current state to the oled display, effectively syncing the two. This method generally does not need to be called, unless you're messing around with the framebuffer manually before you're ready to sync with the display. It's also needed if you're choosing not to draw on the screen immediately with the built in methods.

Usage:

oled.update();

battery

Draw a battery level in percentage indicator. This method allows for up to 4 different states of the battery:

  • 0 bar : battery < 10%
  • 1 bar : 10% >= battery < 40%
  • 2 bar : 40% >= battery < 70%
  • 3 bar : battery >= 70%

Arguments:

  • int x - start column
  • int y - start row
  • int percentage - battery level percentage

usage:

// args: (x,y,percentage)
oled.battery(1,1,20);

bluetooth

Draw a bluetooth icon

usage:

//args: (x,y)
oled.bluetooth(1,1);  

wifi

Draw a WiFi signal strength in percentage indicator. This method allows for up to 4 different signal strength of the WiFi signal:

  • 0 bar : signal < 10%
  • 1 bar : 10% >= signal < 40%
  • 2 bar : 40% >= signal < 70%
  • 3 bar : signal >= 70%

Arguments:

  • int x - start column
  • int y - start row
  • int percentage - signal strength in percentage

usage:

// args: (x,y,percentage)
oled.wifi(1,1,20);

image

A wrapper for drawRGBAImage that supports a fix animation. The animation always start from x=1 and y=1.

Arguments:

  • int x - start column (ignored on animation = true)
  • int y - start row (ignored on animation=true)
  • string image - full path to the image or the filename of the image in the resources folder
  • object font - font to draw "error" message
  • boolean clear - clear the display before the draw
  • boolean reset - stop all animations
  • boolean animated - enable/disable animation
  • boolean wrapping - enable/disable of the error message wrapping

usage:

var font = require('oled-font-pack')
oled.image(1,1,'rpi-frambuesa.png',font.oled_5x7,true,false,false,true);