oled-rpi-i2c-bus
v1.1.4
Published
NodeJS module for controlling oled devices on the Raspbery Pi (including the SSD1306 and SH1106 OLED screens)
Downloads
131
Maintainers
Readme
OLED JS Pi over i2c-bus
What is this?
This is fork of package oled-js-pi
that works thru i2c-bus
package and not use package i2c
.
A NodeJS driver for I2C/SPI compatible monochrome OLED screens; to be used on the Raspberry Pi! Works with 128 x 32, 128 x 64 and 96 x 16 sized screens, of the SSD1306/SH1106 OLED/PLED Controller (read the datasheet here).
This based on the Blog Post and code by Suz Hinton - Read her blog post about how OLED screens work!
OLED screens are really cool - now you can control them with JavaScript!
Install
Raspberry Pi allows for software I2C. To enable software I2C, add dtoverlay=i2c-gpio,bus=3
to /boot.config.txt
. The software I2C would be available on bus
no 3
where the SDA
is on pin GPIO23
/BCM 16
and SCK
is on pun GPIO24
/BCM 18
.
If you haven't already, install NodeJS.
npm install oled-i2c-bus
For SH1106
, if you get an error:
"Error: , Remote I/O error"
You might have to lower the baudrate by adding the following line to /boot/config.txt
and rebooting the Pi
dtparam=i2c_baudrate=10000
This is a known issue with Raspberry Pi as noted in Raspberry Pi I2C hardware bug. Alternatively, use software I2C.
I2C screens
Hook up I2C compatible oled to the Raspberry Pi. Pins: SDA and SCL
I2C example
var i2c = require('i2c-bus');
var oled = require('oled-i2c-bus');
var opts = {
width: 128,
height: 64,
address: 0x3D,
bus: 1,
driver:"SSD1306"
};
var i2cbus = i2c.openSync(opts.bus)
var oled = new oled(i2cBus, opts);
// do cool oled things here
Wait, how do I find out the I2C address of my OLED screen?
Check your screen's documentation...
Available methods
clearDisplay
Fills the buffer with 'off' pixels (0x00). Optional bool argument specifies whether screen updates immediately with result. Default is true.
Usage:
oled.clearDisplay();
dimDisplay
Lowers the contrast on the display. This method takes one argument, a boolean. True for dimming, false to restore normal contrast.
Usage:
oled.dimDisplay(true|false);
invertDisplay
Inverts the pixels on the display. Black becomes white, white becomes black. This method takes one argument, a boolean. True for inverted state, false to restore normal pixel colors.
Usage:
oled.invertDisplay(true|false);
turnOffDisplay
Turns the display off.
Usage:
oled.turnOffDisplay();
turnOnDisplay
Turns the display on.
Usage:
oled.turnOnDisplay();
drawPixel
Draws a pixel at a specified position on the display. This method takes one argument: a multi-dimensional array containing either one or more sets of pixels.
Each pixel needs an x position, a y position, and a color. Colors can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.
Optional bool as last argument specifies whether screen updates immediately with result. Default is true.
Usage:
// draws 4 white pixels total
// format: [x, y, color]
oled.drawPixel([
[128, 1, 1],
[128, 32, 1],
[128, 16, 1],
[64, 16, 1]
]);
drawLine
Draws a one pixel wide line.
Arguments:
- int x0, y0 - start location of line
- int x1, y1 - end location of line
- int color - can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.
Optional bool as last argument specifies whether screen updates immediately with result. Default is true.
Usage:
// args: (x0, y0, x1, y1, color)
oled.drawLine(1, 1, 128, 32, 1);
fillRect
Draws a filled rectangle.
Arguments:
- int x0, y0 - top left corner of rectangle
- int w, h - width and height of rectangle
- int color - can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.
Optional bool as last argument specifies whether screen updates immediately with result. Default is true.
Usage:
// args: (x0, y0, x1, y1, color)
oled.fillRect(1, 1, 10, 20, 1);
drawBitmap
Draws a bitmap using raw pixel data returned from an image parser. The image sourced must be monochrome, and indexed to only 2 colors. Resize the bitmap to your screen dimensions first. Using an image editor or ImageMagick might be required.
Optional bool as last argument specifies whether screen updates immediately with result. Default is true.
Tip: use a NodeJS image parser to get the pixel data, such as pngparse. A demonstration of using this is below.
Example usage:
npm install pngparse
var pngparse = require('pngparse');
pngparse.parseFile('indexed_file.png', function(err, image) {
oled.drawBitmap(image.data);
});
This method is provided as a primitive convenience. A better way to display images is to use NodeJS package png-to-lcd instead. It's just as easy to use as drawBitmap, but is compatible with all image depths (lazy is good!). It will also auto-dither if you choose. You should still resize your image to your screen dimensions. This alternative method is covered below:
npm install png-to-lcd
var pngtolcd = require('png-to-lcd');
pngtolcd('nyan-cat.png', true, function(err, bitmap) {
oled.buffer = bitmap;
oled.update();
});
drawRGBAImage
Draw an RGBA coded image at specific coordinates. This only supports a monochrome OLED so transparent pixels must be 100% transparent, off pixels should have an RGB value of (0, 0, 0), and pixels with any color value will be considered on.
Use a library such as pngjs to read a png file into the required rgba data structure.
Example:
const fs = require('fs');
const PNG = require('pngjs').PNG;
const i2c = require('i2c-bus');
const oled = require('oled-i2c-bus');
var i2cBus = i2c.openSync(0);
var opts = {
width: 128,
height: 64,
address: 0x3C
};
var display = new oled(i2cBus, opts);
display.clearDisplay();
display.turnOnDisplay();
fs.createReadStream('./test.png')
.pipe(new PNG({ filterType: 4 }))
.on('parsed', function () {
setInterval(() => { drawImage(this) }, 1000);
});
function drawImage(image) {
let x = Math.floor(Math.random() * (display.WIDTH) - image.width / 2);
let y = Math.floor(Math.random() * (display.HEIGHT) - image.height / 2);
display.drawRGBAImage(image, x, y);
}
startScroll
Scrolls the current display either left or right. Arguments:
- string direction - direction of scrolling. 'left' or 'right'
- int start - starting row of scrolling area
- int stop - end row of scrolling area
Usage:
// args: (direction, start, stop)
oled.startscroll('left', 0, 15); // this will scroll an entire 128 x 32 screen
stopScroll
Stops all current scrolling behaviour.
Usage:
oled.stopscroll();
setCursor
Sets the x and y position of 'cursor', when about to write text. This effectively helps tell the display where to start typing when writeString() method is called.
Call setCursor just before writeString().
Usage:
// sets cursor to x = 1, y = 1
oled.setCursor(1, 1);
writeString
Writes a string of text to the display.
Call setCursor() just before, if you need to set starting text position.
Arguments:
- obj font - font object in JSON format (see note below on sourcing a font)
- int size - font size, as multiplier. Eg. 2 would double size, 3 would triple etc.
- string text - the actual text you want to show on the display.
- int color - color of text. Can be specified as either 0 for 'off' or black, and 1 or 255 for 'on' or white.
- bool wrapping - true applies word wrapping at the screen limit, false for no wrapping. If a long string without spaces is supplied as the text, just letter wrapping will apply instead.
Optional bool as last argument specifies whether screen updates immediately with result. Default is true.
Before all of this text can happen, you need to load a font buffer for use. A good font to start with is NodeJS package oled-font-5x7.
Usage:
npm install oled-font-5x7
var font = require('oled-font-5x7');
// sets cursor to x = 1, y = 1
oled.setCursor(1, 1);
oled.writeString(font, 1, 'Cats and dogs are really cool animals, you know.', 1, true);
Checkout https://www.npmjs.com/package/oled-font-pack for all-in-one font package.
update
Sends the entire buffer in its current state to the oled display, effectively syncing the two. This method generally does not need to be called, unless you're messing around with the framebuffer manually before you're ready to sync with the display. It's also needed if you're choosing not to draw on the screen immediately with the built in methods.
Usage:
oled.update();
battery
Draw a battery level in percentage indicator. This method allows for up to 4 different states of the battery:
- 0 bar : battery < 10%
- 1 bar : 10% >= battery < 40%
- 2 bar : 40% >= battery < 70%
- 3 bar : battery >= 70%
Arguments:
- int x - start column
- int y - start row
- int percentage - battery level percentage
usage:
// args: (x,y,percentage)
oled.battery(1,1,20);
bluetooth
Draw a bluetooth icon
usage:
//args: (x,y)
oled.bluetooth(1,1);
wifi
Draw a WiFi signal strength in percentage indicator. This method allows for up to 4 different signal strength of the WiFi signal:
- 0 bar : signal < 10%
- 1 bar : 10% >= signal < 40%
- 2 bar : 40% >= signal < 70%
- 3 bar : signal >= 70%
Arguments:
- int x - start column
- int y - start row
- int percentage - signal strength in percentage
usage:
// args: (x,y,percentage)
oled.wifi(1,1,20);
image
A wrapper for drawRGBAImage
that supports a fix animation. The animation always start from x=1
and y=1
.
Arguments:
- int x - start column (ignored on
animation = true
) - int y - start row (ignored on
animation=true
) - string image - full path to the image or the filename of the image in the
resources
folder - object font - font to draw "error" message
- boolean clear - clear the display before the draw
- boolean reset - stop all animations
- boolean animated - enable/disable animation
- boolean wrapping - enable/disable of the error message wrapping
usage:
var font = require('oled-font-pack')
oled.image(1,1,'rpi-frambuesa.png',font.oled_5x7,true,false,false,true);