numinajs
v1.0.4
Published
NuminaJS is a comprehensive data science package for JavaScript, providing a wide range of tools for data preprocessing, feature selection, data transformation, machine learning algorithms, and data visualization. It's designed to simplify complex data sc
Downloads
4
Maintainers
Readme
NuminaJS
NuminaJS is a comprehensive data science package for JavaScript, providing a wide range of tools for data preprocessing, feature selection, data transformation, machine learning algorithms, and data visualization. It's designed to simplify complex data science tasks and make them accessible to JavaScript developers.
Table of Contents
Installation
npm install numinajs
Features
- CSV file reading
- Data preprocessing (handling missing values, outlier detection, normalization)
- Feature selection (correlation analysis, chi-square test, ANOVA, Lasso, Ridge, Elastic Net)
- Data transformation
- Handling imbalanced datasets
- Supervised learning algorithms (SVM, Linear Regression, Logistic Regression, Decision Trees, Random Forests, KNN, Naive Bayes, Gradient Boosting, AdaBoost, Voting Classifier)
- Unsupervised learning algorithms (K-Means, Hierarchical Clustering, DBSCAN)
- Comprehensive model evaluation metrics
- Cross-validation techniques
- Data visualization with Chart.js integration
- Data export to various formats (HTML, JSON, PDF)
Usage
Data Reading
const { readCSV } = require('numinajs');
const data = readCSV('path/to/your/file.csv');
console.log(data);
Data Preprocessing
const { handleMissingValues, detectAndHandleOutliers, normalizeData } = require('numinajs');
// Handle missing values
let processedData = handleMissingValues(data, 'column_name', 'mean');
// Detect and handle outliers
processedData = detectAndHandleOutliers(processedData, 'column_name', 'remove');
// Normalize data
processedData = normalizeData(processedData, 'column_name', 'min-max');
Feature Selection
const { selectFeatures, chiSquareTest, anovaFTest } = require('numinajs');
// Select features based on correlation
const selectedFeatures = selectFeatures(data, 'correlation', 0.5);
// Perform chi-square test
const chiSquareResults = chiSquareTest(data, targetColumn);
// Perform ANOVA F-test
const anovaResults = anovaFTest(data, targetColumn);
Data Transformation
const { transformData } = require('numinajs');
// Apply log transformation
const transformedData = transformData(data, 'column_name', 'log');
Handling Imbalanced Data
const { handleImbalance } = require('numinajs');
// Oversample minority class
const balancedData = handleImbalance(data, 'oversample');
Supervised Learning Algorithms
const { linearRegression, logisticRegression, svm, randomForests } = require('numinajs');
// Linear Regression
const linearModel = linearRegression(data, targetColumn);
// Logistic Regression
const logisticModel = logisticRegression(data, targetColumn);
// Support Vector Machine
const svmModel = svm(data, targetColumn);
// Random Forests
const rfModel = randomForests(data, targetColumn);
Unsupervised Learning Algorithms
const { kMeans, hierarchicalClustering, dbscan } = require('numinajs');
// K-Means Clustering
const kMeansResult = kMeans(data, 3); // 3 clusters
// Hierarchical Clustering
const hierarchicalResult = hierarchicalClustering(data);
// DBSCAN
const dbscanResult = dbscan(data, 0.5, 5); // epsilon = 0.5, minPoints = 5
Model Evaluation Metrics
const { accuracy, precision, recall, f1Score, confusionMatrix, specificity, falsePositiveRate, trueNegativeRate, areaUnderROC, meanSquaredError, rootMeanSquaredError, meanAbsoluteError, rSquared } = require('numinajs');
// Classification metrics
const accuracyScore = accuracy(trueLabels, predictedLabels);
const precisionScore = precision(trueLabels, predictedLabels);
const recallScore = recall(trueLabels, predictedLabels);
const f1 = f1Score(trueLabels, predictedLabels);
const confMatrix = confusionMatrix(trueLabels, predictedLabels);
const specificityScore = specificity(trueLabels, predictedLabels);
const fpr = falsePositiveRate(trueLabels, predictedLabels);
const tnr = trueNegativeRate(trueLabels, predictedLabels);
const auc = areaUnderROC(trueLabels, predictedScores);
// Regression metrics
const mse = meanSquaredError(trueValues, predictedValues);
const rmse = rootMeanSquaredError(trueValues, predictedValues);
const mae = meanAbsoluteError(trueValues, predictedValues);
const r2 = rSquared(trueValues, predictedValues);
Cross-Validation
const { kFoldCrossValidation, stratifiedKFoldCrossValidation } = require('numinajs');
// K-Fold Cross-Validation
const kFoldResults = kFoldCrossValidation(data, labels, model, 5);
// Stratified K-Fold Cross-Validation
const stratifiedResults = stratifiedKFoldCrossValidation(data, labels, model, 5);
Data Visualization
const { plotGraph } = require('numinajs');
// Create a bar chart
const barChartData = {
labels: ['January', 'February', 'March', 'April', 'May'],
datasets: [{
label: 'Sales',
data: [12, 19, 3, 5, 2],
backgroundColor: 'rgba(75, 192, 192, 0.6)'
}]
};
plotGraph(800, 600, 'bar', barChartData, { title: { display: true, text: 'Monthly Sales' } }, 'sales_chart');
Data Export
const { exportToHTML, exportToJSON, exportToPDF } = require('numinajs');
exportToHTML(data, 'output.html');
exportToJSON(data, 'output.json');
exportToPDF(data, 'output.pdf');
API Reference
Data Preprocessing
handleMissingValues(data, column, method, specificValue)
detectAndHandleOutliers(data, column, method)
normalizeData(data, column, method)
encodeCategorical(data, column, method)
cleanData(data)
Feature Selection
selectFeatures(data, method, threshold, column1, column2)
chiSquareTest(data, target)
anovaFTest(data, target)
lassoRegularization(data, target, alpha)
ridgeRegularization(data, target, alpha)
Supervised Learning
linearRegression(data, target)
logisticRegression(data, target, learningRate, iterations)
svm(data, target, C, iterations, learningRate)
decisionTrees(data, target)
randomForests(data, target, numTrees)
kNearestNeighbors(data, target, k)
naiveBayes(data, target)
gradientBoosting(data, target, numTrees, learningRate)
adaBoost(data, target, numEstimators)
votingClassifier(data, target, models)
Unsupervised Learning
kMeans(data, k, maxIterations)
hierarchicalClustering(data)
dbscan(data, epsilon, minPoints)
Model Evaluation Metrics
accuracy(trueLabels, predictedLabels)
precision(trueLabels, predictedLabels)
recall(trueLabels, predictedLabels)
f1Score(trueLabels, predictedLabels)
confusionMatrix(trueLabels, predictedLabels)
specificity(trueLabels, predictedLabels)
falsePositiveRate(trueLabels, predictedLabels)
trueNegativeRate(trueLabels, predictedLabels)
areaUnderROC(trueLabels, predictedScores)
meanSquaredError(trueValues, predictedValues)
rootMeanSquaredError(trueValues, predictedValues)
meanAbsoluteError(trueValues, predictedValues)
rSquared(trueValues, predictedValues)
Cross-Validation
kFoldCrossValidation(data, labels, model, k)
stratifiedKFoldCrossValidation(data, labels, model, k)
Data Visualization
plotGraph(width, height, graphType, data, options, filename)
Data Export
exportToHTML(data, filePath)
exportToJSON(data, filePath)
exportToPDF(data, filePath)
Contributing
We welcome contributions to NuminaJS! Please see our Contributing Guidelines for more information.
License
NuminaJS is released under the MIT License. See the LICENSE file for details.