ntru-circom
v0.0.10
Published
NTRU encryption in Javascript and Circom
Downloads
731
Readme
ntru-circom
This project has not been audited and should not be used in production.
NTRU (post-quantum asymmetric lattice) encryption in Javascript and Circom
Supports large keys and additive homomorphism
Installation
[!IMPORTANT] Requires Node.js and Circom installed (if using circuits)
$ git clone https://github.com/numtel/ntru-circom.git
$ cd ntru-circom
$ npm install
$ npm test
# Run medium sized tests and output circom compilation details
$ GO_167=1 VERBOSE=1 npm test -- -f "decryption #2"
$ GO_167=1 VERBOSE=1 npm test -- -f "encryption #2"
$ GO_167=1 VERBOSE=1 npm test -- -f "together #2"
# Run large tests and output circom compilation details
$ GO_LARGE=1 VERBOSE=1 npm test -- -f "decryption #1"
$ GO_LARGE=1 VERBOSE=1 npm test -- -f "encryption #1"
$ GO_LARGE=1 VERBOSE=1 npm test -- -f "together #1"
Recommended parameters
[!CAUTION] Default settings are not high security!
Description | N | q | p -----------|-----------|---|--------- Default | 167 | 128 | 3 128 bit security margin (NTRU-HPS) | 509 | 2048 | 3 192 bit security margin (NTRU-HPS) | 677 | 2048 | 3 256 bit security margin (NTRU-HPS) | 821 | 4096 | 3 256 bit security margin (NTRU-HRSS) | 701 | 8192 | 3
Source: Wikipedia
[!TIP]
The Choosing Parameters for NTRUEncrypt paper suggests using ~
N/3
fordf
,dg
,dr
parameters.
Javascript implementation
import NTRU from 'ntru-circom';
// Encrypt plaintext values up to N (default 167) bits long
const inputStr = 'Hello World';
const ntru = new NTRU;
// Generate a new private key
ntru.generatePrivateKeyF();
// Generate a new public key
ntru.generateNewPublicKeyGH();
// Encrypt the string
const encrypted = ntru.encryptStr(inputStr);
// Decryption returns original value
if(ntru.decryptStr(encrypted) !== inputStr) throw new Error;
constructor(options)
options
<Object>
N
<Number>
Coefficient count (Default: 167)p
<Number>
Small prime field (Never changes, default: 3)q
<Number>
Main field size (Power of 2, default: 128)df
<Number>
Count of each non-zero (1,-1) coefficients in F (private key complexity)dg
<Number>
Count of each non-zero (1,-1) coefficients in G (public key generation salt secret)dr
<Number>
Count of each non-zero (1,-1) coefficients in randomness during encryptionh
<Number[N]>
Optional, specify a public key for encryptions
loadPrivateKey(fArr)
fArr
<Number[N]>
Array of trinary coefficients (0, 1, -1) (Must be invertible mod q and p)
Load a specific private key. Sets f
, fp
, fq
instance properties.
generatePrivateKeyF()
Generate a new private key. Sets f
, fp
, fq
instance properties.
generatePublicKeyGH()
Generate a new public key. Sets g
, h
instance properties.
generatePublicKeyH()
Generate a new public key using a specific generation secret. Sets h
instance property.
encryptStr(inputPlain)
inputPlain
<String>
Text to be encrypted using public keyh
Returns <Number[N] mod q>
ciphertext array of values.
decryptStr(encrypted)
encrypted
<Number[N] mod q>
Ciphertext array of values
Returns <String>
plaintext
encryptBits(m)
m
<Number[N]>
Plaintext array of trinary coefficients (0, 1, 2) up toN
length
Returns object:
{
value: <Number[N] mod q>,
// Inputs for VerifyEncrypt circuit witness
input: {
r, // randomness
m, // plaintext
h, // public key
quotientE, // verify final step
remainderE, // encrypted ciphertext
},
// Parameters for VerifyEncrypt circuit compilation
params: {q, nq, N},
}
decryptBits(e)
e
<Number[N]>
Ciphertext array of coefficients
Returns object:
{
value: <Number[N] mod p>,
// Inputs for VerifyDecrypt circuit witness
input: {
f, // private key
fp, // inverse of private key mod p
e, // encrypted ciphertext
quotient1, // verify intermediate step
remainder1, // verify intermediate
quotient2, // verify final step
remainder2, // decrypted plaintext
},
// Parameters for VerifyDecrypt circuit compilation
params: {q, nq, p, np, N},
}
verifyKeysInputs()
Generate the inputs and parameters for creating a VerifyInverse
proof to prove coherency of a private key or that the public key matches the private key.
Three cases are keys in the return object:
Case | Usage
-----|-----------
fp
| Use this to verify fp
is derived from f
, confirming a decryption
fq
| Use this as a first step if verifying h
is derived from f
in order to prove the user knows the private key for an encryption
h
| Use this as a second step to verifying the public key
[!TIP] In addition to verifying private key coherency (case
fp
), it is recommended to pad the message with data that can be confirmed during decryption.
Library functions
import {
// general polynomial operations
degree, // compute degree of polynomial
trimPolynomial, // trim leading zeros from polynomial
modInverse, // compute multiplicative inverse mod p
addPolynomials,
subtractPolynomials,
multiplyPolynomials,
dividePolynomials,
multiplyPolynomialsByScalar,
// for inverting polynomials
extendedEuclidianAlgorithm,
polyInv,
// create a random array of given length with set number of 1, -1 values
generateCustomArray,
expandArrayToMultiple,
expandArray,
// format helpers
stringToBits,
bitsToString,
bigintToBits,
bitsToBigInt,
packOutput, // helper for invoking CombineArray template
unpackInput, // helper for invoking UnpackArray template
} from 'ntru-circom';
Circom Templates
include "ntru-circom/circuits/ntru.circom";
VerifyEncrypt
Verifies that a ciphertext matches a given plaintext, publickey, and randomness.
VerifyDecrypt
Verifies that a plaintext matches a given ciphertext and privatekey.
VerifyInverse
Verify that the private key is coherent (f
matches fp
or fq
) or that the public key is derived from a specific private key (h
matches fq
and g
).
CombineArray
/UnpackArray
For importing or exporting data with fewer signals
References
- NTRUEncrypt on Wikipedia
- pointedsphere/NTRU_python
- Choosing Parameters for NTRUEncrypt
- A Chosen-Ciphertext Attack against NTRU
License
MIT