nodehmm
v0.0.3
Published
node implementaion of HMM(Hidden Markov model).
Downloads
6
Readme
nodehmm
Implementation of Forward, Backward, Viterbi, and Baum-Welch(Forward-Backward) algorithms.
You can use an open source train corpus for Chinese in: https://github.com/liwenzhu/corpusZh
Test
To run the unittest:
$ npm test
Benchmark
To get the benchmarks:
$ node benchmarks/index.js
Forward
Forward algorithm is to compute the probability of a sequence of given observation :
var HEALTHY = 0,
FEVER = 1,
NORMAL = 0,
COLD = 1,
DIZZY = 2;
var hmm = require('nodehmm'),
model = new hmm.Model();
var states = ['Healthy', 'Fever'];
model.setStatesSize(states.length);
// ('Healthy': 0.6, 'Fever': 0.4)
model.setStartProbability([0.6, 0.4]);
// matrix A
model.setTransitionProbability([
[0.7, 0.3], // healthy
[0.4, 0.6], // fever
]);
// matrix B
model.setEmissionProbability([
[0.5, 0.4, 0.1], //HEALTHY : {'normal': 0.5, 'cold': 0.4, 'dizzy': 0.1},
[0.1, 0.3, 0.6] //FEVER : {'normal': 0.1, 'cold': 0.3, 'dizzy': 0.6}
]);
var alpha = [];
for (var i = 0; i < states.length; i++) {
alpha[i] = [];
}
var result = hmm.forward(model, [0, 1, 2], alpha);
console.log(result) // -4.698248486593353
Backward
this is the same as forward algorithm:
var HEALTHY = 0,
FEVER = 1,
NORMAL = 0,
COLD = 1,
DIZZY = 2;
var hmm = require('nodehmm'),
model = new hmm.Model();
var states = ['Healthy', 'Fever'];
model.setStatesSize(states.length);
// ('Healthy': 0.6, 'Fever': 0.4)
model.setStartProbability([0.6, 0.4]);
// matrix A
model.setTransitionProbability([
[0.7, 0.3], // healthy
[0.4, 0.6], // fever
]);
// matrix B
model.setEmissionProbability([
[0.5, 0.4, 0.1], //HEALTHY : {'normal': 0.5, 'cold': 0.4, 'dizzy': 0.1},
[0.1, 0.3, 0.6] //FEVER : {'normal': 0.1, 'cold': 0.3, 'dizzy': 0.6}
]);
var beta = [];
for (var i = 0; i < states.length; i++) {
beta[i] = [];
}
exports.testBackword = function (test) {
var result = hmm.backward(model, [0, 1, 2], beta);
test.equal(result, -0.6214883767462701);
test.done();
};
Viterbi
Get the most possible hidden sequence of the given observation:
var HEALTHY = 0,
FEVER = 1,
NORMAL = 0,
COLD = 1,
DIZZY = 2;
var hmm = require('nodehmm'),
model = new hmm.Model();
var states = ['Healthy', 'Fever'];
model.setStatesSize(states.length);
// ('Healthy': 0.6, 'Fever': 0.4)
model.setStartProbability([0.6, 0.4]);
// matrix A
model.setTransitionProbability([
[0.7, 0.3], // healthy
[0.4, 0.6], // fever
]);
// matrix B
model.setEmissionProbability([
[0.5, 0.4, 0.1], //HEALTHY : {'normal': 0.5, 'cold': 0.4, 'dizzy': 0.1},
[0.1, 0.3, 0.6] //FEVER : {'normal': 0.1, 'cold': 0.3, 'dizzy': 0.6}
]);
var result = hmm.viterbi(model, [NORMAL, COLD, DIZZY]);
console.log(result); // [0,0,1]
result = result.map(function(r){return states[r]});
console.log(result); // ['Healthy','Healthy','Fever']