npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

node-kmeans

v1.1.9

Published

Node.js asynchronous implementation of the clustering algorithm k-means

Downloads

6,413

Readme

node-kmeans

Node.js asynchronous implementation of the clustering algorithm k-means

k-means

Installation

  $ npm install node-kmeans

Example

// Data source: LinkedIn
const data = [
  {'company': 'Microsoft' , 'size': 91259, 'revenue': 60420},
  {'company': 'IBM' , 'size': 400000, 'revenue': 98787},
  {'company': 'Skype' , 'size': 700, 'revenue': 716},
  {'company': 'SAP' , 'size': 48000, 'revenue': 11567},
  {'company': 'Yahoo!' , 'size': 14000 , 'revenue': 6426 },
  {'company': 'eBay' , 'size': 15000, 'revenue': 8700},
];

// Create the data 2D-array (vectors) describing the data
let vectors = new Array();
for (let i = 0 ; i < data.length ; i++) {
  vectors[i] = [ data[i]['size'] , data[i]['revenue']];
}

const kmeans = require('node-kmeans');
kmeans.clusterize(vectors, {k: 4}, (err,res) => {
  if (err) console.error(err);
  else console.log('%o',res);
});

Inputs

  • vectors is a nXm array (n [lines] : number of points, m [columns] : number of dimensions)
  • options object:
    • k : number of clusters
    • distance (optional) : custom distance function returning the distance between two points (a,b) => number, default Euclidian Distance
  • callback node-style callback taking error and result argument

Outputs

An array of objects (one for each cluster) with the following properties:

  • centroid : array of X elements (X = number of dimensions)
  • cluster : array of X elements containing the vectors of the input data
  • clusterInd : array of X integers which are the indexes of the input data

To do

  • Technique to avoid local optima (mutation, ...)

Author

Philmod <[email protected]>