node-dto
v2.0.2
Published
A small dto lib for nodejs
Downloads
143
Maintainers
Readme
Node Dto
Node Dto is a small lib, that help developer to create dto's using javascript.
This package is focused only in javascript.
$ npm i node-dto
How use
The node-dto
package exports MakeDto
function, that is a factory to generate your custom Dto's
and TYPES
enum to help you find all available types to use
The MakeDto
function receive an array of object with this schema:
{
name: String,
serialize: String,type: TYPES.STRING |
TYPES.NUMBER |
TYPES.DATE |
TYPES.BOOLEAN |
TYPES.OBJECT |
TYPES.ENUM |
TYPES.ARRAY,
required: Boolean
}
Note: For type Number
validator parses to Number Type in javascript check issue Add Number Parsing for Number type
Enum
For Enum
type you need to pass a enumOps
array props and specify, a list of accepted options.
Eg.
MakeDto([
{
name: 'opsStatus',
serialize: 'ops_status',
required: true,
type: TYPES.ENUM,
enumOps: ['pending', 'approved', 'rejected']
}
]
Object
For Object
type you need to pass a schema
array of object props. The schema
prop follow the same interface that MakeDto
exports.
Eg-
MakeDto([
{
name: 'fields',
serialize: 'fields',
required: true,
type: TYPES.OBJECT,
schema: [
{
name: 'Name',
serialize: 'name',
required: true,
type: 'Number',
}
]
}
]
Array
For Array
type you need to pass a itemsType
prop. The itemsType
specify what will be type of array
that will be validated.
In case of using Enum
or Object
you need to pass as well the enumOps
or schema
prop too.
Eg-
MakeDto([
{
name: 'fields',
serialize: 'fields',
required: true,
type: TYPES.ARRAY,
itemsType: 'Number'
}
]
or
MakeDto([
{
name: 'fields',
serialize: 'fields',
required: true,
type: TYPES.ARRAY,
itemsType: TYPES.ENUM,
enumOps: ['accepted', 'nullable']
}
]
or
MakeDto([
{
name: 'fields',
serialize: 'fields',
required: true,
type: TYPES.ARRAY,
itemsType: TYPES.OBJECT,
schema: [
{
name: 'StatusCode',
serialize: 'status_code',
required: true,
type: 'Number'
}
]
}
]
Name
The name
field is what key on object or array you will send. Eg. { fullName: 'Acidiney Dias' }
Serialize
The serialize
field is the key the will be used to export after validate dto. Eg. { full_name: 'Acidiney Dias' }
Type
As name said, the type
field tell to dto internal function how to validate this field.
This help us, to skip unecessary if
statemenet to check types.
Note: If you pass an invalid type, you will receive an ValidateException
.
Required
The required
field, tell to dto internal function if can ignore when receive null
in this field.
This prevents possible errors.
Eg. Receive an null
on functions that calculate something.
Available Methods
.entries()
The entries()
function returns all name
keys wroted when Dto schema was created.
Eg:
// CreateUserDto.js
const { MakeDto, TYPES } = require('node-dto')
module.exports = MakeDto([
{
name: 'firstName',
serialize: 'first_name',
required: true,
type: TYPES.STRING
},
{
name: 'lastName',
serialize: 'last_name',
required: true,
type: TYPES.STRING
},
{
name: 'email',
serialize: 'email',
required: true,
type: TYPES.STRING
}
])
// UserController.js
console.log(CreateUserDto.entries()) // firstName, lastName, email
You can use this, in request.only
for example to retrive from request only this elements.
.validate(obj: Object | array)
The .validate
function receive the current payload, validate with type and obrigatority and returns an serialized object
or throws an ValidateException
.
Eg.
Dto:
module.exports = MakeDto([
{
name: 'firstName',
serialize: 'first_name',
required: true,
type: TYPES.STRING
},
{
name: 'lastName',
serialize: 'last_name',
required: true,
type: TYPES.STRING
},
{
name: 'email',
serialize: 'email',
required: true,
type: TYPES.STRING
}
])
Comes:
CreateUserDto.validate({
firstName: 'Acidiney',
lastName: 'Dias',
email: '[email protected]'
})
Returns:
{
first_name: 'Acidiney',
last_name: 'Dias',
email: '[email protected]'
}
Or an exception when something is wrong:
Comes:
CreateUserDto.validate({
firstName: 928292,
lastName: 'Dias',
email: '[email protected]'
})
Returns:
ValidateException: Field firstName with value 928292, is not valid!
.validateAsync(obj: Object | array)
The .validateAsync
function receive the current payload, validate with type and obrigatority and returns an serialized object
or return ValidationResult
.
Eg.
Dto:
module.exports = MakeDto([
{
name: 'firstName',
serialize: 'first_name',
required: true,
type: TYPES.STRING
},
{
name: 'lastName',
serialize: 'last_name',
required: true,
type: TYPES.STRING
},
{
name: 'email',
serialize: 'email',
required: true,
type: TYPES.STRING
}
])
Comes:
CreateUserDto.validateAsync({
firstName: 'Acidiney',
lastName: 'Dias',
email: '[email protected]'
})
Returns:
{
success: true,
value: {
first_name: 'Acidiney',
last_name: 'Dias',
email: '[email protected]'
}
}
Or an exception when something is wrong:
Comes:
CreateUserDto.validateAsync({
firstName: 928292,
lastName: 'Dias',
email: '[email protected]'
})
Returns:
{
success: false,
value: [
{
first_name: 'INVALID_STRING_ERROR'
}
]
}
.export(data: Object | Array)
Sometimes you receive data from your database for exemple in one format like snake_case
and you need tou transform to camelCase
, in order to mantain your code more clean.
The .export
function receives the untreated payload and returns a object using the fields name
and serialize
in your Dto
.
Eg.
module.exports = MakeDto([
{
name: 'firstName',
serialize: 'first_name',
required: true,
type: TYPES.STRING
},
{
name: 'lastName',
serialize: 'last_name',
required: true,
type: TYPES.STRING
},
{
name: 'email',
serialize: 'email',
required: true,
type: TYPES.STRING
}
])
Comes:
CreateUserDto.export({
first_name: 'Acidiney',
last_name: 'Dias',
email: '[email protected]'
})
// or
CreateUserDto.export([
{
first_name: 'Acidiney',
last_name: 'Dias',
email: '[email protected]'
},
{
first_name: 'Jhon',
last_name: 'Doe',
email: '[email protected]'
}
])
Returns:
{
firstName: 'Acidiney',
lastName: 'Dias',
email: '[email protected]'
}
Or
[
{
firstName: 'Acidiney',
lastName: 'Dias',
email: '[email protected]'
},
{
firstName: 'Jhon',
lastName: 'Doe',
email: '[email protected]'
}
]
.exportUsingSQL(entity = null)
Sometimes using .export
function can be slower, if you are using too much data.
In this case, you can use .exportUsingSQL
function that consider your Dto
, and returns an Array of string
.
You can use this array in the .select()
function of your ORM.
Eg. Using Knex
const users = await knex.from('users')
.select(...Users.exportUsingSQL())
.fetch();
Considering join's
in queries you can pass the name of entity
that this Dto
belongs.
const users = await knex.from('tokens')
.select('tokens.token', ...Users.exportUsingSQL('users'))
.innerJoin('users', 'tokens.user_id', 'users.id')
.fetch();
Feel free to submit an PR, to help project.
Thanks ^^
Author
Acidiney Dias