npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

nlptoolkit-wordtovec

v1.0.1

Published

WordToVec Library

Downloads

1

Readme

Word Embeddings

Distributed representations (DR) of words (i.e., word embeddings) are used to capture semantic and syntactic regularities of the language by analyzing distributions of word relations within the textual data. Modeling methods generating DRs rely on the assumption that 'words that occur in similar contexts tend to have similar meanings' (distributional hypothesis) which stems from the nature of language itself. Due to their unsupervised nature, these modeling methods do not require any human judgement input to train, which allows researchers to train very large datasets in relatively low costs.

Traditional representations of words (i.e., one-hot vectors) are based on word-word (W x W) co-occurrence sparse matrices where W is the number of distinct words in the corpus. On the other hand, distributed word representations (DRs) (i.e., word embeddings) are word-context (W x C) dense matrices where C < W and C is the number of context dimensions which are determined by underlying model assumptions. Dense representations are arguably better at capturing generalized information and more resistant to overfitting due to context vectors representing shared properties of words. DRs are real valued vectors where each context can be considered as a continuous feature of a word. Due to their ability to represent abstract features of a word, DRs are considered as reusable across higher level tasks in ease, even if they are trained with totally different datasets.

Prediction based DR models gained much attention after Mikolov et al.’s neural network based SkipGram model in 2013. The secret behind the prediction based models is simple: never build a sparse matrix at all. Prediction based models construct dense matrix representations directly instead of reducing sparse ones to dense ones. These models are trained like any other supervised learning task by giving lots of positive and negative samples without adding any human supervision costs. Aim of these models is to maximize the probability of each context c with the same distributional assumptions on word-context co-occurrences, similar to count based models.

SkipGram is a prediction based distributional semantic model (DSM) consisting of a shallow neural network architecture inspired from neural language modeling (LM) intuitions. It is commonly known for its open-source implementation library word2vec. SkipGram acts like a log-linear classifier maximizing the prediction of the surrounding words of a word within a context (center window). Probabilistic word and sentence prediction by local neighbors of a word has been successfully applied on LM tasks under Markov assumption. SkipGram leverages the same idea by considering the words within the window as positive and negative instances and learning weights (for k contexts) which maximizes word predictions. In the training process, each word vector starts as a random vector, and then iteratively shifts to the neighboring vector.

Video Lectures

For Developers

You can also see Python, Java, C++, Swift, Cython or C# repository.

Requirements

Node.js

To check if you have a compatible version of Node.js installed, use the following command:

node -v

You can find the latest version of Node.js here.

Git

Install the latest version of Git.

Npm Install

npm install nlptoolkit-wordtovec

Download Code

In order to work on code, create a fork from GitHub page. Use Git for cloning the code to your local or below line for Ubuntu:

git clone <your-fork-git-link>

A directory called util will be created. Or you can use below link for exploring the code:

git clone https://github.com/starlangsoftware/wordtovec-js.git

Open project with Webstorm IDE

Steps for opening the cloned project:

  • Start IDE
  • Select File | Open from main menu
  • Choose WordToVec-Js file
  • Select open as project option
  • Couple of seconds, dependencies will be downloaded.

Detailed Description

To initialize artificial neural network:

NeuralNetwork(corpus: Corpus, parameter: WordToVecParameter)

To train neural network:

train(): VectorizedDictionary

Cite

@inproceedings{ercan-yildiz-2018-anlamver,
	title = "{A}nlam{V}er: Semantic Model Evaluation Dataset for {T}urkish - Word Similarity and Relatedness",
	author = {Ercan, G{\"o}khan  and
  	Y{\i}ld{\i}z, Olcay Taner},
	booktitle = "Proceedings of the 27th International Conference on Computational Linguistics",
	month = aug,
	year = "2018",
	address = "Santa Fe, New Mexico, USA",
	publisher = "Association for Computational Linguistics",
	url = "https://www.aclweb.org/anthology/C18-1323",
	pages = "3819--3836",
}