npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

nlptoolkit-datastructure

v1.0.7

Published

Simple Data Structures Library

Downloads

9

Readme

Cache

The idea of caching items for fast retrieval goes back nearly to the beginning of the computer science. We also use that idea and use a LRU cache for storing morphological analyses of surface forms. Before analyzing a surface form, we first look up to the cache, and if there is an hit, we just take the analyses from the cache. If there is a miss, we analyze the surface form and put the morphological analyses of that surface form in the LRU cache. As can be expected, the speed of the caching mechanism surely depends on the size of the cache.

For Developers

You can also see Java, Python, Cython, Swift, C, C#, or C++ repository.

Requirements

Node.js

To check if you have a compatible version of Node.js installed, use the following command:

node -v

You can find the latest version of Node.js here.

Git

Install the latest version of Git.

Npm Install

npm install nlptoolkit-datastructure

Download Code

In order to work on code, create a fork from GitHub page. Use Git for cloning the code to your local or below line for Ubuntu:

git clone <your-fork-git-link>

A directory called util will be created. Or you can use below link for exploring the code:

git clone https://github.com/starlangsoftware/datastructure-js.git

Open project with Webstorm IDE

Steps for opening the cloned project:

  • Start IDE
  • Select File | Open from main menu
  • Choose DataStructure-Js file
  • Select open as project option
  • Couple of seconds, dependencies will be downloaded.

Detailed Description

CounterHashMap

CounterHashMap bir veri tipinin kaç kere geçtiğini hafızada tutmak için kullanılmaktadır.

Bir CounterHashMap yaratmak için

a = CounterHashMap()

Hafızaya veri eklemek için

put(key: K)

Örneğin,

a.put("ali")

Bu aşamanın ardından "ali" nin sayacı 1 olur.

Hafızaya o veriyi birden fazla kez eklemek için

putNTimes(key: K, N: number)

Örneğin,

a.putNTimes("veli", 5)

Bu aşamanın ardından "ali"'nin sayacı 5 olur.

Hafızada o verinin kaç kere geçtiğini bulmak için

count(key: K): number

Örneğin, "veli" nin kaç kere geçtiğini bulmak için

kacKere = a.count("veli")

Bu aşamanın ardından kacKere değişkeninin değeri 5 olur.

Hafızada hangi verinin en çok geçtiğini bulmak için

max(threshold: number = 0.0): K | undefined

Örneğin,

kelime = a.max()

Bu aşamanın ardından kelime "veli" olur.

LRUCache

LRUCache veri cachelemek için kullanılan bir veri yapısıdır. LRUCache en yakın zamanda kullanılan verileri öncelikli olarak hafızada tutar. Bir LRUCache yaratmak için

LRUCache(cacheSize: number)

kullanılır. cacheSize burada cachelenecek verinin büyüklüğünün limitini göstermektedir.

Cache'e bir veri eklemek için

add(key: K, data: T)

kullanılır. data burada eklenecek veriyi, key anahtar göstergeyi göstermektedir.

Cache'de bir veri var mı diye kontrol etmek için

contains(key: K): boolean

kullanılır.

Cache'deki veriyi anahtarına göre getirmek için

get(key: K): T | null

kullanılır.