nlp-js-tools-french
v1.0.9
Published
POS Tagger and lemmatizer for javascript
Downloads
543
Maintainers
Readme
NLP Javascript tools for french language
Tokenize, POS Tagger, lemmatizer and stemmer
This package is partly based on the Snowball stemming algorythm and the javascript adaptation by Kasun Gajasinghe, University of Moratuwa
This package offers 4 NLP tools in javascript for french language :
- Tokenizing
- POS Tagging
- Lemmatizing
- Stemming
Install
npm install nlp-js-tools-french
Usage
var NlpjsTFr = require('nlp-js-tools-french');
Corpus to use
var corpus = "Elle semble se nourrir essentiellement de plancton, et de hotdog.";
Configs
var config = {
tagTypes: ['art', 'ver', 'nom'],
strictness: false,
minimumLength: 3,
debug: true
};
New instance with specific corpus and configs
var nlpToolsFr = new NlpjsTFr(corpus, config);
These are the available methods, self-explanatory. Note: The sentence that is passed into the class earlier is automaticaly tokenized.
var tokenizedWords = nlpToolsFr.tokenized;
var posTaggedWords = nlpToolsFr.posTagger();
var lemmatizedWords = nlpToolsFr.lemmatizer();
var stemmedWords = nlpToolsFr.stemmer();
var stemmedWord = nlpToolsFr.wordStemmer("aléatoirement");
Attributes
config
Shows config
tokenized
["semble", "nourrir", "de"]
Methods return
posTagger()
[{
"id": 1,
"word": "semble",
"pos": [
"VER",
"VER"
]
},
{
"id": 2,
"word": "nourrir",
"pos": [
"VER"
]
},
{
"id": 3,
"word": "de",
"pos": [
"NOM",
"ART:def",
"PRE"
]
}]
lemmatizer()
[{
"id": 1,
"word": "semble",
"lemma": "sembler"
},
{
"id": 2,
"word": "nourrir",
"lemma": "nourrir"
},
{
"id": 3,
"word": "de",
"lemma": "de"
}]
stemmer()
[{
"id": 1,
"word": "semble",
"stem": "sembl"
},
{
"id": 3,
"word": "nourrir",
"stem": "nourr"
},
{
"id": 5,
"word": "de",
"stem": "de"
}]
wordStemmer(word)
{
word: "aléatoirement",
stem: "aléatoir"
}
Config
Option | Type | Default | Description
--- | --- | --- | ---
tagTypes | Array | ["adj", "adv", "art", "con", "nom", "ono", "pre", "ver", "pro"]
| List of dictionnaries the package will look in, in case you only need verbs or nouns, both or whatever else. If a word does not belong to any type, it is tagged as "UNK"
.
strictness | Bool | false
| If you set the strictness to true
and try to POS Tag the word generalement
, it will fail because the word is missine its accents. On the other hand, trying to POS Tag the word dé
with the strictness set to false
well return the types art
, pre
and nom
because the word will match de
in these dictionnaries.
minimumLength | Int | 1 | Algorythms will ignore words that are shorter than this parameter.
debug | Bool | false | Enable console debug