ngx-tfjs
v0.0.6
Published
This project contains Angular bindings for TensorFlow.js models. The library simplifies using ML in the browser by:
Downloads
113
Readme
ngx-tfjs
This project contains Angular bindings for TensorFlow.js models. The library simplifies using ML in the browser by:
- Providing services and pipes wrapping the models, exposing a declarative interface to interact with TensorFlow.js
- Loading them lazily, to make sure they are not blocking page rendering, nor impacting Core Web Vitals
- Running the model in a Web Worker, to ensure they are not blocking the main thread
Usage
- Add to your project:
ng add ngx-tfjs
The schematics will:
- Install the package
- Add it to your
package.json
- Add the
TFJSModule
to yourapp.module.ts
In your app.component.html
try the models by:
{{ 'you suck' | toxicity | async | json }}
The toxicity model will categorize the string 'you suck'
as toxic ✨.
You're done!
Manual
- Install:
yarn add ngx-tfjs
- Import:
import { ToxicityModule } from 'ngx-tfjs';
@NgModule({
imports: [ToxicityModule]
})
export class AppComponent {}
- Use:
{{ text | toxicity | async | json }}
You can also inject the ToxicityService
:
@Component({ ... })
export class AppComponent {
constructor(private service: ToxicityService) {
service.init(THRESHOLD);
}
makePrediction(text: string) {
const predictions = await this.service.classify(text);
console.log(predictions);
}
}
The model also provides a pipe and a service for answering questions based on a given text:
- Import:
import { QnAModule } from 'ngx-tfjs';
@NgModule({
imports: [QnAModule]
})
export class AppComponent {}
- Use:
{{ text | qna: question | async | json }}
License
MIT