ngram-natural-language-generator
v0.5.2
Published
Takes in a text/file/stream and generates random sentences that sound like they could have been in the text
Downloads
30
Maintainers
Readme
ngram-natural-language-generator
Takes in text/file(s)/stream(s) and generates random sentences that sound like they could have been in the original text using a bigram generator. Surprisingly works on most languages and writing styles.
You can experiment with your own texts here http://cesine.github.io/ngram-natural-language-generator/samples
Usage
Commandline
$ npm install ngram-natural-language-generator --save
$ ./index.js samples/jaberwocky.txt
Browser
$ bower install ngram-natural-language-generator --save
There is an example browser use in samples/index.html.
<textarea id="ngram-nlg-text"></textarea>
<textarea id="ngram-nlg-result"></textarea>
<script>
window.NLG = window.exports = window.exports || {};
</script>
<script src="bower_components/ngram-natural-language-generator/lib/tokenizer.js"></script>
<script src="bower_components/ngram-natural-language-generator/lib/nlg.js"></script>
<script src="bower_components/ngram-natural-language-generator/lib/ngrams.js"></script>
<script src="bower_components/ngram-natural-language-generator/lib/ngram-nlg.js"></script>
<script src="bower_components/ngram-natural-language-generator/lib/drag-and-drop-file-upload.js"></script>
<script>
NLG.currentOptions = {
text: ''
};
NLG.currentOptions.text = document.getElementById('ngram-nlg-text').value;
NLG.build(NLG.currentOptions, function(err, result){
if (err) return console.warn(err);
document.getElementById('ngram-nlg-result').value = NLG.generate(NLG.currentOptions.model);
});
</script>
Node
From file:
var generator = require('ngram-natural-language-generator').generator;
generator({
filename: 'samples/jabberwocky.txt',
model: {
maxLength: 100,
minLength: 50
}
}, function(err, sentence){
console.log(sentence);
// One two. Callooh. Beware the borogoves And the claws that bite the Jabberwock my
// beamish boy. One two. One two. And through the mome raths outgrabe. And stood The
// frumious Bandersnatch. He took his joy. And the borogoves And the claws that bite the
// wabe All mimsy were the Jabberwock with eyes of flame Came whiffling through and the
// slithy toves Did gyre and through The Jabberwock. Twas brillig and shun The Jabberwock
// my son. Beware the borogoves And the mome raths outgrabe. Beware the Jabberwock. Come
// to my son.
});
From text:
var generator = require('ngram-natural-language-generator').generator;
generator({
text: 'Colorless green ideas sleep furiously.',
model: {
maxLength: 100,
minLength: 50
}
}, function(err, sentence){
console.log(sentence);
});
From web url:
var generator = require('ngram-natural-language-generator').generator;
var http = require('http');
http.get('http://www.jabberwocky.com/carroll/jabber/jabberwocky.html', function(res) {
generator({
stream: res
}, function(err, sentence){
console.log(sentence);
});
});
From tokens:
If you're working with a language which doesn't tokenize on whitespace or unicode punctionation you can supply the tokens.
var generator = require('ngram-natural-language-generator').generator;
generator({
tokens: ['その', '酩酊', '状態を', '愛する', 'ことに', 'よって'],
model: {
maxLength: 100,
minLength: 50
}
}, function(err, sentence){
console.log(sentence);
});