npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

nfc-pcsc

v0.8.1

Published

Easy reading and writing NFC tags and cards

Downloads

1,302

Readme

nfc-pcsc

npm build status nfc-pcsc channel on discord

Easy reading and writing NFC tags and cards in Node.js

Built-in support for auto-reading card UIDs and reading tags emulated with Android HCE.

NOTE: Reading tag UID and methods for writing and reading tag content depend on NFC reader commands support. It is tested to work with ACR122 USB reader but it should work with all PC/SC compliant devices.
When detecting tags does not work see Alternative usage.

This library uses pcsclite native bindings pokusew/node-pcsclite under the hood.

Psst! Problems upgrading to 0.6.0? Check out this migration note.

Content

Installation

Requirements: at least Node.js 8 or newer (see this FAQ for more info)

Note: This library can be used only in Node.js environments on Linux/UNIX, macOS and Windows. Read why here.

  1. Node Native Modules build tools

    Because this library (via pokusew/node-pcsclite under the hood) uses Node Native Modules (C++ Addons), which are automatically built (using node-gyp) when installing via npm or yarn, you need to have installed C/C++ compiler toolchain and some other tools depending on your OS.

    Please refer to the node-gyp > Installation for the list of required tools depending on your OS and steps how to install them.

  2. PC/SC API in your OS

    On macOS and Windows you don't have to install anything, pcsclite API is provided by the OS.

    On Linux/UNIX you'd probably need to install pcsclite library and daemon**.

    For example, in Debian/Ubuntu:

    apt-get install libpcsclite1 libpcsclite-dev

    To run any code you will also need to have installed the pcsc daemon:

    apt-get install pcscd
  3. Once you have all needed libraries, you can install nfc-pcsc using npm:

    npm install nfc-pcsc --save

    or using Yarn:

    yarn add nfc-pcsc

Flow of handling tags

When a NFC tag (card) is attached to the reader, the following is done:

  1. it tries to find out the standard of card (TAG_ISO_14443_3 or TAG_ISO_14443_4)

  2. it will connect to the card, so any other card specific commands could be send

  3. handling of card

    • when autoProcessing is true (default value) it will handle card by the standard:

      TAG_ISO_14443_3 (MIFARE Ultralight, 1K ...): sends GET_DATA command to retrieve card UID
      TAG_ISO_14443_4 (e.g.: Android HCE): sends SELECT_APDU command to retrieve data by file

      then card event is fired, for which you can listen and then you can read or write data on the card
      see Basic usage how to do it

    • when autoProcessing is false (default value) it will only fire card event
      then you can send whatever commands you want using reader.transmit method
      see Alternative usage how to do it

  4. you can read data, write data and send other commands

Basic usage

Running examples locally

If you want see it in action, clone this repository, install dependencies with npm and run npm run example. Of course, instead of npm you can Yarn if you want. See scripts section of package.json for all available examples run commands.

git clone https://github.com/pokusew/nfc-pcsc.git
cd nfc-pcsc
npm install
npm run example

You can use this library in any Node.js 8+ environment (even in an Electron app).

// in ES6
import { NFC } from 'nfc-pcsc';

// without Babel in ES2015
const { NFC } = require('nfc-pcsc');

const nfc = new NFC(); // optionally you can pass logger

nfc.on('reader', reader => {

	console.log(`${reader.reader.name}  device attached`);

	// enable when you want to auto-process ISO 14443-4 tags (standard=TAG_ISO_14443_4)
	// when an ISO 14443-4 is detected, SELECT FILE command with the AID is issued
	// the response is available as card.data in the card event
	// see examples/basic.js line 17 for more info
	// reader.aid = 'F222222222';

	reader.on('card', card => {

		// card is object containing following data
		// [always] String type: TAG_ISO_14443_3 (standard nfc tags like MIFARE) or TAG_ISO_14443_4 (Android HCE and others)
		// [always] String standard: same as type
		// [only TAG_ISO_14443_3] String uid: tag uid
		// [only TAG_ISO_14443_4] Buffer data: raw data from select APDU response

		console.log(`${reader.reader.name}  card detected`, card);

	});

	reader.on('card.off', card => {
		console.log(`${reader.reader.name}  card removed`, card);
	});

	reader.on('error', err => {
		console.log(`${reader.reader.name}  an error occurred`, err);
	});

	reader.on('end', () => {
		console.log(`${reader.reader.name}  device removed`);
	});

});

nfc.on('error', err => {
	console.log('an error occurred', err);
});

Alternative usage

You can disable auto processing of tags and process them yourself. It may be useful when you are using other than ACR122 USB reader or non-standard tags.

// in ES6
import { NFC } from 'nfc-pcsc';

// without Babel in ES2015
const { NFC } = require('nfc-pcsc');

const nfc = new NFC(); // optionally you can pass logger

nfc.on('reader', reader => {

	// disable auto processing
	reader.autoProcessing = false;

	console.log(`${reader.reader.name}  device attached`);

	reader.on('card', card => {

		// card is object containing following data
		// String standard: TAG_ISO_14443_3 (standard nfc tags like MIFARE Ultralight) or TAG_ISO_14443_4 (Android HCE and others)
		// String type: same as standard
		// Buffer atr

		console.log(`${reader.reader.name}  card inserted`, card);

		// you can use reader.transmit to send commands and retrieve data
		// see https://github.com/pokusew/nfc-pcsc/blob/master/src/Reader.js#L291

	});
	
	reader.on('card.off', card => {	
		console.log(`${reader.reader.name}  card removed`, card);
	});

	reader.on('error', err => {
		console.log(`${reader.reader.name}  an error occurred`, err);
	});

	reader.on('end', () => {
		console.log(`${reader.reader.name}  device removed`);
	});

});

nfc.on('error', err => {
	console.log('an error occurred', err);
});

Reading and writing data

You can read from and write to numerous NFC tags including MIFARE Ultralight (tested), MIFARE Classic, MIFARE DESFire, ...

Actually, you can even read/write any possible non-standard NFC tag and card, via sending APDU commands according card's technical documentation via reader.transmit.

Here is a simple example showing reading and writing data to simple card without authenticating (e.g. MIFARE Ultralight):
See Basic usage how to set up reader or look here for full code

reader.on('card', async card => {

	console.log();
	console.log(`card detected`, card);

	// example reading 12 bytes assuming containing text in utf8
	try {

		// reader.read(blockNumber, length, blockSize = 4, packetSize = 16)
		const data = await reader.read(4, 12); // starts reading in block 4, continues to 5 and 6 in order to read 12 bytes
		console.log(`data read`, data);
		const payload = data.toString(); // utf8 is default encoding
		console.log(`data converted`, payload);

	} catch (err) {
		console.error(`error when reading data`, err);
	}

	// example write 12 bytes containing text in utf8
	try {

		const data = Buffer.allocUnsafe(12);
		data.fill(0);
		const text = (new Date()).toTimeString();
		data.write(text); // if text is longer than 12 bytes, it will be cut off
		// reader.write(blockNumber, data, blockSize = 4)
		await reader.write(4, data); // starts writing in block 4, continues to 5 and 6 in order to write 12 bytes
		console.log(`data written`);

	} catch (err) {
		console.error(`error when writing data`, err);
	}

});

More examples

📦📦📦 You can find more examples in examples folder, including:

  • read-write.js – detecting, reading and writing cards standard ISO/IEC 14443-3 cards (NTAG, MIFARE Ultralight, ...)
  • mifare-classic.js – authenticating, reading and writing MIFARE Classic cards
  • mifare-desfire.js – authenticating and accessing data on MIFARE DESFire cards
  • mifare-ultralight-ntag.js – an example implementation of Mifare Ultralight EV1 and NTAG specific commands
  • basic.js – reader events explanation
  • led.js – controlling LED and buzzer of ACR122U reader
  • uid-logger.js – logs uid when a card is detected

Feel free to open pull request, if you have any useful example, that you'd like to add.

FAQ

Migration from older versions to 0.6.0

There was a breaking change in 0.6.0, as the default export was removed (because of non-standard behaviour of ES6 modules in ES5 env (see #12 and v0.6.0 release changelog)).

You have to update all requires or imports of this library to the following (note the brackets around NFC):

// in ES6 environment
import { NFC } from 'nfc-pcsc';

// in ES2015 environment
const { NFC } = require('nfc-pcsc');

Can I use this library in my Electron app?

Yes, you can! It works well.

But please note, that this library uses Node Native Modules (underlying library pokusew/node-pcsclite which provides access to PC/SC API).

Read carefully Using Native Node Modules guide in Electron documentation to fully understand the problematic.

Note, that because of Node Native Modules, you must build your app on target platform (you must run Windows build on Windows machine, etc.).
You can use CI/CD server to build your app for certain platforms.
For Windows, I recommend you to use AppVeyor.
For macOS and Linux build, there are plenty of services to choose from, for example CircleCI, Travis CI CodeShip.

Can I use this library in my angular-electron app?

Yes, you can! But as this library uses Node Native Modules, you must change some config in package.json and webpack.config.js as described in this comment.

Do I have to use Babel in my app too?

No, you don't have to. This library works great in any Node.js 8+ environment (even in an Electron app).

Psst! Instead of using async/await (like in examples), you can use Promises.

reader
  .read(...)
  .then(data => ...)
  .catch(err => ...))

Babel is used under the hood to transpile features, that are not supported in Node.js 8 (for example ES6 modules – import/export, see .babelrc for list of used plugins). The transpiled code (in the dist folder) is then published into npm and when you install and require the library, the transpiled code is used, so you don't have to worry about anything.

Which Node.js versions are supported?

nfc-pcsc officially supports the following Node.js versions: 8.x, 9.x, 10.x, 11.x, 12.x, 13.x.

How do I require/import this library?

// in ES6 environment
import { NFC } from 'nfc-pcsc';

// in ES2015 environment
const { NFC } = require('nfc-pcsc');

If you want to import uncompiled source and transpile it yourself (not recommended), you can do it as follows:

import { NFC } from 'nfc-pcsc/src';

Can I read a NDEF formatted tag?

Yes, you can! You can read raw byte card data with reader.read method, and then you can parse it with any NDEF parser, e.g. TapTrack/NdefJS.

Psst! There is also an example (ndef.js), but it is not finished yet. Feel free to contribute.

Can I use this library in my React Native app?

Short answer: NO

Explanation: Mobile support is virtually impossible because nfc-pcsc uses Node Native Modules to access system PC/SC API (actually under the hood, the pcsclite native binding is implemented in @pokusew/pcsclite). So the Node.js runtime and PC/SC API are required for nfc-pcsc to run. That makes it possible to use it on the most of OS (Windows, macOS, Linux) directly in Node.js or in Electron.js and NW.js desktop apps.

Frequent errors

TypeError: NFC is not a constructor

No worry, just check that you import/require the library like this (note the brackets around NFC):

// in ES6 environment
import { NFC } from 'nfc-pcsc';

// in ES2015 environment
const { NFC } = require('nfc-pcsc');

Take a a look at How do I require/import this library? section for more info.

Note, that const NFC = require('nfc-pcsc'); or import NFC from 'nfc-pcsc' (NFC without brackets) won't work, because there is no default export.
It was removed for non-standard behaviour of ES6 modules in ES5 env (see #12 and v0.6.0 release changelog)

Transaction failed error when using CONNECT_MODE_DIRECT

No worry, just needs a proper configuration, see explanation and instructions here.

MIFARE Classic: Authentication Error after Multiple Writes

No worry, you have probably modified a sector trailer instead of a data block, see explanation and instructions here.

Reading data from a type 4 tags inside a Elsys.se sensors

According to @martijnthe's findings, it seems to be necessary to change the CLASS of READ BINARY APDU command from the default value of 0xFF to 0x00 in order to make a successful read.

If you experience the same problems, you can try setting the fourth argument (readClass) of the reader.read(blockNumber, length, blockSize, packetSize, readClass) method to value 0x00.

Relevant conversation: https://github.com/pokusew/nfc-pcsc/pull/55#issuecomment-450120232

License

MIT