npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

net-snmp

v3.15.1

Published

JavaScript implementation of the Simple Network Management Protocol (SNMP)

Downloads

43,945

Readme

net-snmp

This module implements versions 1, 2c and 3 of the Simple Network Management Protocol (SNMP).

Read this in other languages: English, 简体中文.

This module is installed using node package manager (npm):

npm install net-snmp

It is loaded using the require() function:

var snmp = require ("net-snmp");

Quick Start

Sessions to remote hosts can then be created and used to perform SNMP requests and send SNMP traps or informs:

var session = snmp.createSession ("127.0.0.1", "public");

var oids = ["1.3.6.1.2.1.1.5.0", "1.3.6.1.2.1.1.6.0"];

session.get (oids, function (error, varbinds) {
    if (error) {
        console.error (error);
    } else {
        for (var i = 0; i < varbinds.length; i++) {
            if (snmp.isVarbindError (varbinds[i])) {
                console.error (snmp.varbindError (varbinds[i]));
            } else {
                console.log (varbinds[i].oid + " = " + varbinds[i].value);
            }
        }
    }
    session.close ();
});

session.trap (snmp.TrapType.LinkDown, function (error) {
    if (error) {
        console.error (error);
    }
});

Applications

RFC 3413 describes five types of SNMP applications:

  1. Command Generator Applications — which initiate read or write requests
  2. Command Responder Applications — which respond to received read or write requests
  3. Notification Originator Applications — which generate notifications (traps or informs)
  4. Notification Receiver Applications — which receive notifications (traps or informs)
  5. Proxy Forwarder Applications — which forward SNMP messages

This library provides support for all of the above applications, with the documentation for each shown in this table:

| Application | Common Use | Documentation | | ----------- | ---------- | ------------- | | Command Generator | NMS / SNMP tools | Application: Command & Notification Generator | | Command Responder | SNMP agents | Application: SNMP Agent | | Notification Originator | SNMP agents / NMS-to-NMS notifications | Application: Command & Notification Generator | | Notification Receiver | NMS | Application: Notification Receiver | | Proxy Forwarder | SNMP agents | Agent Forwarder Module |

Features

  • Support for all SNMP versions: SNMPv1, SNMPv2c and SNMPv3
  • SNMPv3 message authentication using MD5 or SHA, and privacy using DES or AES encryption
  • Community-based and user-based authorization
  • SNMP initiator for all relevant protocol operations: Get, GetNext, GetBulk, Set, Trap, Inform
  • Convenience methods for MIB "walking", subtree collection, table and table column collection
  • SNMPv3 context support
  • Notification receiver for traps and informs
  • MIB parsing and MIB module store
  • Translation between numeric and named OIDs
  • SNMP agent with MIB management for both scalar and tabular data
  • Agent table index support for non-integer keys, foreign keys, composite keys and table augmentation
  • Agent support for "RowStatus" protocol-based creation and deletion of table rows
  • Agent support for these MIB constraints: MAX-ACCESS, integer ranges, string sizes, integer enumerations
  • SNMP proxy forwarder for agent
  • AgentX subagent
  • IPv4 and IPv6

Standards Compliance

This module aims to be fully compliant with the following RFCs:

  • 1098 - A Simple Network Management Protocol (version 1)
  • 1155 - Structure and Identification of Management Information
  • 2571 - Agent Extensibility (AgentX) Protocol Version 1
  • 2578 - Structure of Management Information Version 2 (SMIv2)
  • 3413 - Simple Network Management Protocol (SNMP) Applications
  • 3414 - User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)
  • 3416 - Version 2 of the Protocol Operations for the Simple Network Management Protocol (SNMP)
  • 3417 - Transport Mappings for the Simple Network Management Protocol (SNMP)
  • 3826 - The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model

Constants

The following sections describe constants exported and used by this module.

snmp.Version1, snmp.Version2c, snmp.Version3

These constants are used to specify which of version supported by this module should be used.

snmp.ErrorStatus

This object contains constants for all valid values the error-status field in response PDUs can hold. If when parsing a PDU the error-index field contains a value not defined in this object the constant snmp.ErrorStatus.GeneralError will be used instead of the value in the error-status field. The following constants are defined in this object:

  • NoError
  • TooBig
  • NoSuchName
  • BadValue
  • ReadOnly
  • GeneralError
  • NoAccess
  • WrongType
  • WrongLength
  • WrongEncoding
  • WrongValue
  • NoCreation
  • InconsistentValue
  • ResourceUnavailable
  • CommitFailed
  • UndoFailed
  • AuthorizationError
  • NotWritable
  • InconsistentName

snmp.ObjectType

This object contains constants used to specify syntax for varbind objects, e.g.:

var varbind = {
    oid: "1.3.6.1.2.1.1.4.0",
    type: snmp.ObjectType.OctetString,
    value: "[email protected]"
};

The following constants are defined in this object:

  • Boolean
  • Integer
  • OctetString
  • Null
  • OID
  • IpAddress
  • Counter
  • Gauge
  • TimeTicks
  • Opaque
  • Integer32
  • Counter32
  • Gauge32
  • Unsigned32
  • Counter64
  • NoSuchObject
  • NoSuchInstance
  • EndOfMibView

snmp.TrapType

This object contains constants used to specify a type of SNMP trap. These constants are passed to the trap() and inform() methods exposed by the Session class. The following constants are defined in this object:

  • ColdStart
  • WarmStart
  • LinkDown
  • LinkUp
  • AuthenticationFailure
  • EgpNeighborLoss
  • EnterpriseSpecific

snmp.PduType

This object contains constants used to identify the SNMP PDU types specified in RFC 3416. The values, along with their numeric codes, are:

  • 160 - GetRequest
  • 161 - GetNextRequest
  • 162 - GetResponse
  • 163 - SetRequest
  • 164 - Trap
  • 165 - GetBulkRequest
  • 166 - InformRequest
  • 167 - TrapV2
  • 168 - Report

snmp.SecurityLevel

This object contains constants to specify the security of an SNMPv3 message as per RFC 3414:

  • noAuthNoPriv - for no message authentication or encryption
  • authNoPriv - for message authentication and no encryption
  • authPriv - for message authentication and encryption

snmp.AuthProtocols

This object contains constants to select a supported digest algorithm for SNMPv3 messages that require authentication:

  • md5 - for HMAC-MD5 message authentication
  • sha - for HMAC-SHA-1 message authentication
  • sha224 - for HMAC-SHA-224 message authentication
  • sha256 - for HMAC-SHA-256 message authentication
  • sha384 - for HMAC-SHA-384 message authentication
  • sha512 - for HMAC-SHA-512 message authentication

MD5 and SHA (actually SHA-1) are the hash algorithms specified in the original SNMPv3 User-Based Security Model RFC (RFC 3414); the other four were added later in RFC 7860.

snmp.PrivProtocols

This object contains constants to select a supported encryption algorithm for SNMPv3 messages that require privacy:

  • des - for DES encryption (CBC-DES)
  • aes - for 128-bit AES encryption (CFB-AES-128)
  • aes256b - for 256-bit AES encryption (CFB-AES-256) with "Blumenthal" key localization
  • aes256r - for 256-bit AES encryption (CFB-AES-256) with "Reeder" key localization

DES is the sole encryption algorithm specified in the original SNMPv3 User-Based Security Model RFC (RFC 3414); 128-bit AES for SNMPv3 was added later in RFC 3826. 256-bit AES has not been standardized, and as such comes with two varieties of key localization. Cisco and a number of other vendors commonly use the "Reeder" key localization variant. Other encryption algorithms are not supported.

snmp.AgentXPduType

The Agent Extensibility (AgentX) Protocol specifies these PDUs in RFC 2741:

  • 1 - Open
  • 2 - Close
  • 3 - Register
  • 4 - Unregister
  • 5 - Get
  • 6 - GetNext
  • 7 - GetBulk
  • 8 - TestSet
  • 9 - CommitSet
  • 10 - UndoSet
  • 11 - CleanupSet
  • 12 - Notify
  • 13 - Ping
  • 14 - IndexAllocate
  • 15 - IndexDeallocate
  • 16 - AddAgentCaps
  • 17 - RemoveAgentCaps
  • 18 - Response

snmp.AccessControlModelType

  • None - no access control for defined communities and users
  • Simple - simple access control of levels "read-only" or "read-write" for defined communites and users

snmp.AccessLevel

  • None - no access granted to the community or user
  • ReadOnly - read-only access granted to the community or user
  • ReadWrite - read-write access granted to the community or user

snmp.MaxAccess

  • 0 - not-accessible
  • 1 - accessible-for-notify
  • 2 - read-only
  • 3 - read-write
  • 4 - read-create

snmp.RowStatus

Status values

  • 1 - active
  • 2 - notInService
  • 3 - notReady

Actions

  • 4 - createAndGo
  • 5 - createAndWait
  • 6 - destroy

snmp.ResponseInvalidCode

  • 1 - EIp4AddressSize
  • 2 - EUnknownObjectType
  • 3 - EUnknownPduType
  • 4 - ECouldNotDecrypt
  • 5 - EAuthFailure
  • 6 - EReqResOidNoMatch
  • `7 - (no longer used)
  • 8 - EOutOfOrder
  • 9 - EVersionNoMatch
  • 10 - ECommunityNoMatch
  • 11 - EUnexpectedReport
  • 12 - EResponseNotHandled
  • 13 - EUnexpectedResponse

snmp.OidFormat

  • oid - oid
  • path - path
  • module - module

OID Strings & Varbinds

Some parts of this module accept simple OID strings, e.g.:

var oid = "1.3.6.1.2.1.1.5.0";

Other parts take an OID string, it's type and value. This is collectively referred to as a varbind, and is specified as an object, e.g.:

var varbind = {
    oid: "1.3.6.1.2.1.1.5.0",
    type: snmp.ObjectType.OctetString,
    value: new Buffer ("host1")
};

The type parameter is one of the constants defined in the snmp.ObjectType object.

The JavaScript true and false keywords are used for the values of varbinds with type Boolean.

All integer based types are specified as expected (this includes Integer, Counter, Gauge, TimeTicks, Integer32, Counter32, Gauge32, and Unsigned32), e.g. -128 or 100.

Since JavaScript does not offer full 64 bit integer support objects with type Counter64 cannot be supported in the same way as other integer types, instead Node.js Buffer objects are used. Users are responsible for producing (i.e. for set() requests) and consuming (i.e. the varbinds passed to callback functions) Buffer objects. That is, this module does not work with 64 bit integers, it simply treats them as opaque Buffer objects.

Dotted decimal strings are used for the values of varbinds with type OID, e.g. 1.3.6.1.2.1.1.5.0.

Dotted quad formatted strings are used for the values of varbinds with type IpAddress, e.g. 192.168.1.1.

Node.js Buffer objects are used for the values of varbinds with type Opaque and OctetString. For varbinds with type OctetString this module will accept JavaScript strings, but will always give back Buffer objects.

The NoSuchObject, NoSuchInstance and EndOfMibView types are used to indicate an error condition. Currently there is no reason for users of this module to to build varbinds using these types.

Callback Functions & Error Handling

Most of the request methods exposed by this module require a mandatory callback function. This function is called once a request has been processed. This could be because an error occurred when processing the request, a trap has been dispatched or a successful response was received.

The first parameter to every callback is an error object. In the case no error occurred this parameter will be "null" indicating no error, e.g.:

function responseCb (error, varbinds) {
    if (error) {
        console.error (error);
    } else {
        // no error, do something with varbinds
    }
}

When defined, the error parameter is always an instance of the Error class, or a sub-class described in one of the sub-sections contained in this section.

The semantics of error handling is slightly different between SNMP version 1 and subsequent versions 2c and 3. In SNMP version 1 if an error occurs when calculating the value for one OID the request as a whole will fail, i.e. no OIDs will have a value.

This failure manifests itself within the error-status and error-index fields of the response. When the error-status field in the response is non-zero, i.e. not snmp.ErrorStatus.NoError the callback will be called with error defined detailing the error.

Requests made with SNMP version 1 can simply assume all OIDs have a value when no error object is passed to the callback, i.e.:

var oids = ["1.3.6.1.2.1.1.5.0", "1.3.6.1.2.1.1.6.0"];

session.get (oids, function (error, varbinds) {
    if (error) {
        console.error (error.toString ());
    } else {
        var sysName = varbinds[0].value; // this WILL have a value
    }
});

In SNMP versions 2c and 3, instead of using the error-status and error-index fields of the response to signal an error, the value for the varbind placed in the response for an OID will have an object syntax describing an error. The error-status and error-index fields of the response will indicate the request was successul, i.e. snmp.ErrorStatus.NoError.

This changes the way in which error checking is performed in the callback. When using SNMP version 2c each varbind must be checked to see if its value was computed and returned successfully:

var oids = ["1.3.6.1.2.1.1.5.0", "1.3.6.1.2.1.1.6.0"];

session.get (oids, function (error, varbinds) {
    if (error) {
        console.error (error.toString ());
    } else {
        if (varbinds[0].type != snmp.ErrorStatus.NoSuchObject
                && varbinds[0].type != snmp.ErrorStatus.NoSuchInstance
                && varbinds[0].type != snmp.ErrorStatus.EndOfMibView) {
            var sysName = varbinds[0].value;
        } else {
            console.error (snmp.ObjectType[varbinds[0].type] + ": "
                    + varbinds[0].oid);
        }
    }
});

This module exports two functions and promotes a specifc pattern to make error checking a little simpler. Firstly, regardless of version in use varbinds can always be checked. This results in a generic callback that can be used for both versions.

The isVarbindError() function can be used to determine if a varbind has an error condition. This function takes a single varbind parameter and returns true if the varbind has an error condition, otherwise false. The exported varbindError() function can then be used to obtain the error string describing the error, which will include the OID for the varbind:

session.get (oids, function (error, varbinds) {
    if (error) {
        console.error (error.toString ());
    } else {
        if (snmp.isVarbindError (varbinds[0])) {
            console.error (snmp.varbindError (varbinds[0]));
        } else {
            var sysName = varbinds[0].value;
        }
    }
});

If the varbindError function is called with a varbind for which isVarbindError would return false, the string NotAnError will be returned appended with the related OID.

The sections following defines the error classes used by this module.

snmp.RequestFailedError

This error indicates a remote host failed to process a request. The exposed message attribute will contain a detailed error message. This error also exposes a status attribute which contains the error-index value from a response. This will be one of the constants defined in the snmp.ErrorStatus object.

snmp.RequestInvalidError

This error indicates a failure to render a request message before it could be sent. The error can also indicate that a parameter provided was invalid. The exposed message attribute will contain a detailed error message.

snmp.RequestTimedOutError

This error states that no response was received for a particular request. The exposed message attribute will contain the value Request timed out.

snmp.ResponseInvalidError

This error indicates a failure to parse a response message. The exposed message attribute will contain a detailed error message, and as a sub-class of Error, its toString() method will yield that message attribute.

An error of this class will always additionally include a code attribute (one of the values in ResponseInvalidCode); and in some cases, also have an info attribute which provides code-specific supplemental information. An authentication error, for example -- code ResponseInvalidCode.EAuthFailure -- will contain a map in info with the attempted authentication data which failed to authenticate.

snmp.ProcessingError

If a receiver or an agent receives a packet it is unable to decode, then it will produce a ProcessingError containing:

  • rinfo information on the origin of the packet,
  • a buffer containing the packet contents, and
  • an error containing the original error encountered during processing.

Application: Command & Notification Generator

This library provides a Session class to provide support for building "Command Generator" and "Notification Originator" SNMP applications.

All SNMP requests are made using an instance of the Session class. This module exports two functions that are used to create instances of the Session class:

  • createSession() - for v1 and v2c sessions
  • createV3Session() - for v3 sessions

snmp.createSession ([target], [community], [options])

The createSession() function instantiates and returns an instance of the Session class for SNMPv1 or SNMPv2c:

// Default options
var options = {
    port: 161,
    retries: 1,
    timeout: 5000,
    backoff: 1.0,
    transport: "udp4",
    trapPort: 162,
    version: snmp.Version1,
    backwardsGetNexts: true,
    reportOidMismatchErrors: false,
    idBitsSize: 32
};

var session = snmp.createSession ("127.0.0.1", "public", options);

The optional target parameter defaults to 127.0.0.1. The optional community parameter defaults to public. The optional options parameter is an object, and can contain the following items:

  • port - UDP port to send requests too, defaults to 161
  • retries - Number of times to re-send a request, defaults to 1
  • sourceAddress - IP address from which SNMP requests should originate, there is no default for this option, the operating system will select an appropriate source address when the SNMP request is sent
  • sourcePort - UDP port from which SNMP requests should originate, defaults to an ephemeral port selected by the operation system
  • timeout - Number of milliseconds to wait for a response before re-trying or failing, defaults to 5000
  • backoff - The factor by which to increase the timeout for every retry, defaults to 1 for no increase
  • transport - Specify the transport to use, can be either udp4 or udp6, defaults to udp4
  • trapPort - UDP port to send traps and informs too, defaults to 162
  • version - Either snmp.Version1 or snmp.Version2c, defaults to snmp.Version1
  • backwardsGetNexts - boolean to allow GetNext operations to retrieve lexicographically preceding OIDs, defaults to true
  • reportOidMismatchErrors - boolean to allow error reporting of OID mismatches between requests and responses, defaults to false
  • idBitsSize - Either 16 or 32, defaults to 32. Used to reduce the size of the generated id for compatibility with some older devices.

When a session has been finished with it should be closed:

session.close ();

snmp.createV3Session (target, user, [options])

The createV3Session() function instantiates and returns an instance of the same Session class as createSession(), only instead initialized for SNMPv3:

// Default options for v3
var options = {
    port: 161,
    retries: 1,
    timeout: 5000,
    transport: "udp4",
    trapPort: 162,
    version: snmp.Version3,
    engineID: "8000B98380XXXXXXXXXXXXXXXXXXXXXXXX", // where the X's are random hex digits
    backwardsGetNexts: true,
    reportOidMismatchErrors: false,
    idBitsSize: 32,
    context: ""
};

// Example user
var user = {
    name: "blinkybill",
    level: snmp.SecurityLevel.authPriv,
    authProtocol: snmp.AuthProtocols.sha,
    authKey: "madeahash",
    privProtocol: snmp.PrivProtocols.des,
    privKey: "privycouncil"
};

var session = snmp.createV3Session ("127.0.0.1", user, options);

The target and user parameters are mandatory. The optional options parameter has the same meaning as for the createSession() call. The one additional field in the options parameter is the context field, which adds an SNMPv3 context to the session.

The user object must contain a name and level field. The level field can take these values from the snmp.SecurityLevel object:

  • snmp.SecurityLevel.noAuthNoPriv - for no message authentication or encryption
  • snmp.SecurityLevel.authNoPriv - for message authentication and no encryption
  • snmp.SecurityLevel.authPriv - for message authentication and encryption

The meaning of these are as per RFC3414. If the level supplied is authNoPriv or authPriv, then the authProtocol and authKey fields must also be present. The authProtocol field can take values from the snmp.AuthProtocols object:

  • snmp.AuthProtocols.md5 - for MD5 message authentication
  • snmp.AuthProtocols.sha - for SHA message authentication

If the level supplied is authPriv, then the privProtocol and privKey fields must also be present. The privProtocol field can take values from the snmp.PrivProtocols object:

  • snmp.PrivProtocols.des - for DES encryption
  • snmp.PrivProtocols.aes - for AES encryption

Once a v3 session is created, the same set of session methods are available as for v1 and v2c.

session.on ("close", callback)

The close event is emitted by the session when the session's underlying UDP socket is closed.

No arguments are passed to the callback.

Before this event is emitted all outstanding requests are cancelled, resulting in the failure of each outstanding request. The error passed back through to each request will be an instance of the Error class with the errors message attribute set to Socket forcibly closed.

The following example prints a message to the console when a session's underlying UDP socket is closed:

session.on ("close", function () {
    console.log ("socket closed");
});

session.on ("error", callback)

The error event is emitted by the session when the session's underlying UDP socket emits an error.

The following arguments will be passed to the callback function:

  • error - An instance of the Error class, the exposed message attribute will contain a detailed error message.

The following example prints a message to the console when an error occurs with a session's underlying UDP socket, the session is then closed:

session.on ("error", function (error) {
    console.log (error.toString ());
    session.close ();
});

session.close ()

The close() method closes the sessions underlying UDP socket. This will result in the close event being emitted by the sessions underlying UDP socket which is passed through to the session, resulting in the session also emitting a close event.

The following example closes a sessions underlying UDP socket:

session.close ();

session.get (oids, callback)

The get() method fetches the value for one or more OIDs.

The oids parameter is an array of OID strings. The callback function is called once the request is complete. The following arguments will be passed to the callback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred
  • varbinds - Array of varbinds, will not be provided if an error occurred

The varbind in position N in the varbinds array will correspond to the OID in position N in the oids array in the request.

Each varbind must be checked for an error condition using the snmp.isVarbindError() function when using SNMP version 2c.

The following example fetches values for the sysName (1.3.6.1.2.1.1.5.0) and sysLocation (1.3.6.1.2.1.1.6.0) OIDs:

var oids = ["1.3.6.1.2.1.1.5.0", "1.3.6.1.2.1.1.6.0"];

session.get (oids, function (error, varbinds) {
    if (error) {
        console.error (error.toString ());
    } else {
        for (var i = 0; i < varbinds.length; i++) {
            // for version 1 we can assume all OIDs were successful
            console.log (varbinds[i].oid + "|" + varbinds[i].value);
        
            // for version 2c we must check each OID for an error condition
            if (snmp.isVarbindError (varbinds[i]))
                console.error (snmp.varbindError (varbinds[i]));
            else
                console.log (varbinds[i].oid + "|" + varbinds[i].value);
        }
    }
});

session.getBulk (oids, [nonRepeaters], [maxRepetitions], callback)

The getBulk() method fetches the value for the OIDs lexicographically following one or more OIDs in the MIB tree.

The oids parameter is an array of OID strings. The optional nonRepeaters parameter specifies the number of OIDs in the oids parameter for which only 1 varbind should be returned, and defaults to 0. For each remaining OID in the oids parameter the optional maxRepetitions parameter specifies how many OIDs lexicographically following an OID for which varbinds should be fetched, and defaults to 20.

The callback function is called once the request is complete. The following arguments will be passed to the callback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred
  • varbinds - Array of varbinds, will not be provided if an error occurred

The varbind in position N in the varbinds array will correspond to the OID in position N in the oids array in the request.

For for the first nonRepeaters items in varbinds each item will be a single varbind. For all remaining items in varbinds each item will be an array of varbinds - this makes it easy to tie response varbinds with requested OIDs since response varbinds are grouped and placed in the same position in varbinds.

Each varbind must be checked for an error condition using the snmp.isVarbindError() function when using SNMP version 2c.

The following example fetches values for the OIDs following the sysContact (1.3.6.1.2.1.1.4.0) and sysName (1.3.6.1.2.1.1.5.0) OIDs, and up to the first 20 OIDs in the ifDescr (1.3.6.1.2.1.2.2.1.2) and ifType (1.3.6.1.2.1.2.2.1.3) columns from the ifTable (1.3.6.1.2.1.2.2) table:

var oids = [
    "1.3.6.1.2.1.1.4.0",
    "1.3.6.1.2.1.1.5.0",
    "1.3.6.1.2.1.2.2.1.2",
    "1.3.6.1.2.1.2.2.1.3"
];

var nonRepeaters = 2;

session.getBulk (oids, nonRepeaters, function (error, varbinds) {
    if (error) {
        console.error (error.toString ());
    } else {
        // step through the non-repeaters which are single varbinds
        for (var i = 0; i < nonRepeaters; i++) {
            if (i >= varbinds.length)
                break;

            if (snmp.isVarbindError (varbinds[i]))
                console.error (snmp.varbindError (varbinds[i]));
            else
                console.log (varbinds[i].oid + "|" + varbinds[i].value);
        }

        // then step through the repeaters which are varbind arrays
        for (var i = nonRepeaters; i < varbinds.length; i++) {
            for (var j = 0; j < varbinds[i].length; j++) {
                if (snmp.isVarbindError (varbinds[i][j]))
                    console.error (snmp.varbindError (varbinds[i][j]));
                else
                    console.log (varbinds[i][j].oid + "|"
                    		+ varbinds[i][j].value);
            }
        }
    }
});

session.getNext (oids, callback)

The getNext() method fetches the value for the OIDs lexicographically following one or more OIDs in the MIB tree.

The oids parameter is an array of OID strings. The callback function is called once the request is complete. The following arguments will be passed to the callback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred
  • varbinds - Array of varbinds, will not be provided if an error occurred

The varbind in position N in the varbinds array will correspond to the OID in position N in the oids array in the request.

Each varbind must be checked for an error condition using the snmp.isVarbindError() function when using SNMP version 2c.

The following example fetches values for the next OIDs following the sysObjectID (1.3.6.1.2.1.1.1.0) and sysName (1.3.6.1.2.1.1.4.0) OIDs:

var oids = [
    "1.3.6.1.2.1.1.1.0",
    "1.3.6.1.2.1.1.4.0"
];

session.getNext (oids, function (error, varbinds) {
    if (error) {
        console.error (error.toString ());
    } else {
        for (var i = 0; i < varbinds.length; i++) {
            // for version 1 we can assume all OIDs were successful
            console.log (varbinds[i].oid + "|" + varbinds[i].value);
        
            // for version 2c we must check each OID for an error condition
            if (snmp.isVarbindError (varbinds[i]))
                console.error (snmp.varbindError (varbinds[i]));
            else
                console.log (varbinds[i].oid + "|" + varbinds[i].value);
        }
    }
});

session.inform (typeOrOid, [varbinds], [options], callback)

The inform() method sends a SNMP inform.

The typeOrOid parameter can be one of two types; one of the constants defined in the snmp.TrapType object (excluding the snmp.TrapType.EnterpriseSpecific constant), or an OID string.

The first varbind to be placed in the request message will be for the sysUptime.0 OID (1.3.6.1.2.1.1.3.0). The value for this varbind will be the value returned by the process.uptime () function multiplied by 100 (this can be overridden by providing upTime in the optional options parameter, as documented below).

This will be followed by a second varbind for the snmpTrapOID.0 OID (1.3.6.1.6.3.1.1.4.1.0). The value for this will depend on the typeOrOid parameter. If a constant is specified the trap OID for the constant will be used as supplied for the varbinds value, otherwise the OID string specified will be used as is for the value of the varbind.

The optional varbinds parameter is an array of varbinds to include in the inform request, and defaults to the empty array [].

The optional options parameter is an object, and can contain the following items:

  • upTime - Value of the sysUptime.0 OID (1.3.6.1.2.1.1.3.0) in the inform, defaults to the value returned by the process.uptime () function multiplied by 100

The callback function is called once a response to the inform request has been received, or an error occurred. The following arguments will be passed to the callback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred
  • varbinds - Array of varbinds, will not be provided if an error occurred

The varbind in position N in the varbinds array will correspond to the varbind in position N in the varbinds array in the request. The remote host should echo back varbinds and their values as specified in the request, and the varbinds array will contain each varbind as sent back by the remote host.

Normally there is no reason to use the contents of the varbinds parameter since the varbinds are as they were sent in the request.

The following example sends a generic cold-start inform to a remote host, it does not include any varbinds:

session.inform (snmp.TrapType.ColdStart, function (error) {
    if (error)
        console.error (error);
});

The following example sends an enterprise specific inform to a remote host, and includes two enterprise specific varbinds:

var informOid = "1.3.6.1.4.1.2000.1";

var varbinds = [
    {
        oid: "1.3.6.1.4.1.2000.2",
        type: snmp.ObjectType.OctetString,
        value: "Periodic hardware self-check"
    },
    {
        oid: "1.3.6.1.4.1.2000.3",
        type: snmp.ObjectType.OctetString,
        value: "hardware-ok"
    }
];

// Override sysUpTime, specfiying it as 10 seconds...
var options = {upTime: 1000};
session.inform (informOid, varbinds, options, function (error) {
    if (error)
        console.error (error);
});

session.set (varbinds, callback)

The set() method sets the value of one or more OIDs.

The varbinds parameter is an array of varbind objects. The callback function is called once the request is complete. The following arguments will be passed to the callback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred
  • varbinds - Array of varbinds, will not be provided if an error occurred

The varbind in position N in the varbinds array will correspond to the varbind in position N in the varbinds array in the request. The remote host should echo back varbinds and their values as specified in the request unless an error occurred. The varbinds array will contain each varbind as sent back by the remote host.

Each varbind must be checked for an error condition using the snmp.isVarbindError() function when using SNMP version 2c.

The following example sets the value of the sysName (1.3.6.1.2.1.1.4.0) and sysLocation (1.3.6.1.2.1.1.6.0) OIDs:

var varbinds = [
    {
        oid: "1.3.6.1.2.1.1.5.0",
        type: snmp.ObjectType.OctetString,
        value: "host1"
    }, {
        oid: "1.3.6.1.2.1.1.6.0",
        type: snmp.ObjectType.OctetString,
        value: "somewhere"
    }
];

session.set (varbinds, function (error, varbinds) {
    if (error) {
        console.error (error.toString ());
    } else {
        for (var i = 0; i < varbinds.length; i++) {
            // for version 1 we can assume all OIDs were successful
            console.log (varbinds[i].oid + "|" + varbinds[i].value);
        
            // for version 2c we must check each OID for an error condition
            if (snmp.isVarbindError (varbinds[i]))
                console.error (snmp.varbindError (varbinds[i]));
            else
                console.log (varbinds[i].oid + "|" + varbinds[i].value);
        }
    }
});

session.subtree (oid, [maxRepetitions], feedCallback, doneCallback)

The subtree() method fetches the value for all OIDs lexicographically following a specified OID in the MIB tree which have the specified OID as their base. For example, the OIDs sysName (1.3.6.1.2.1.1.5.0) and sysLocation (1.3.6.1.2.1.1.6.0) both have the same base system (1.3.6.1.2.1.1) OID.

For SNMP version 1 repeated get() calls are made until the one of the returned OIDs does not use the specified OID as its base. For SNMP version 2c repeated getBulk() calls are made until the one of the returned OIDs does no used the specified OID as its base.

The oid parameter is an OID string. The optional maxRepetitions parameter is passed to getBulk() requests when SNMP version 2c is being used.

This method will not call a single callback once all OID values are fetched. Instead the feedCallback function will be called each time a response is received from the remote host. The following arguments will be passed to the feedCallback function:

  • varbinds - Array of varbinds, and will contain at least one varbind

Each varbind must be checked for an error condition using the snmp.isVarbindError() function when using SNMP version 2c.

Once at least one of the returned OIDs does not use the specified OID as its base, or an error has occurred, the doneCallback function will be called. The following arguments will be passed to the doneCallback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred

Once the doneCallback function has been called the request is complete and the feedCallback function will no longer be called.

If the feedCallback function returns a true value when called no more get() or getBulk() method calls will be made and the doneCallback will be called.

The following example fetches all OIDS under the system (1.3.6.1.2.1.1) OID:

var oid = "1.3.6.1.2.1.1";

function doneCb (error) {
    if (error)
        console.error (error.toString ());
}

function feedCb (varbinds) {
    for (var i = 0; i < varbinds.length; i++) {
        if (snmp.isVarbindError (varbinds[i]))
            console.error (snmp.varbindError (varbinds[i]));
        else
            console.log (varbinds[i].oid + "|" + varbinds[i].value);
    }
}

var maxRepetitions = 20;

// The maxRepetitions argument is optional, and will be ignored unless using
// SNMP verison 2c
session.subtree (oid, maxRepetitions, feedCb, doneCb);

session.table (oid, [maxRepetitions], callback)

The table() method fetches the value for all OIDs lexicographically following a specified OID in the MIB tree which have the specified OID as their base, much like the subtree() method.

This method is designed to fetch conceptual tables, for example the ifTable (1.3.6.1.2.1.2.2) table. The values for returned varbinds will be structured into objects to represent conceptual rows. Each row is then placed into an object with the rows index being the key, e.g.:

var table = {
    // Rows keyed by ifIndex (1 and 2 are shown)
    1: {
        // ifDescr (column 2) and ifType (columnd 3) are shown
        2: "interface-1",
        3: 6,
        ...
    },
    2: {
        2: "interface-2",
        3: 6,
        ...
    },
    ...
}

Internally this method calls the subtree() method to obtain the subtree of the specified table.

The oid parameter is an OID string. If an OID string is passed which does not represent a table the resulting object produced to hold table data will be empty, i.e. it will contain no indexes and rows. The optional maxRepetitions parameter is passed to the subtree() request.

The callback function will be called once the entire table has been fetched. The following arguments will be passed to the callback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred
  • table - Object containing object references representing conceptual rows keyed by index (e.g. for the ifTable table rows are keyed by ifIndex), each row object will contain values keyed by column number, will not be provided if an error occurred

If an error occurs with any varbind returned by subtree() no table will be passed to the callback function. The reason for failure, and the related OID string (as returned from a call to the snmp.varbindError() function), will be passed to the callback function in the error argument as an instance of the RequestFailedError class.

The following example fetches the ifTable (1.3.6.1.2.1.2.2) table:

var oid = "1.3.6.1.2.1.2.2";

function sortInt (a, b) {
    if (a > b)
        return 1;
    else if (b > a)
        return -1;
    else
        return 0;
}

function responseCb (error, table) {
    if (error) {
        console.error (error.toString ());
    } else {
        // This code is purely used to print rows out in index order,
        // ifIndex's are integers so we'll sort them numerically using
        // the sortInt() function above
        var indexes = [];
        for (index in table)
            indexes.push (parseInt (index));
        indexes.sort (sortInt);
        
        // Use the sorted indexes we've calculated to walk through each
        // row in order
        for (var i = 0; i < indexes.length; i++) {
            // Like indexes we sort by column, so use the same trick here,
            // some rows may not have the same columns as other rows, so
            // we calculate this per row
            var columns = [];
            for (column in table[indexes[i]])
                columns.push (parseInt (column));
            columns.sort (sortInt);
            
            // Print index, then each column indented under the index
            console.log ("row for index = " + indexes[i]);
            for (var j = 0; j < columns.length; j++) {
                console.log ("   column " + columns[j] + " = "
                        + table[indexes[i]][columns[j]]);
            }
        }
    }
}

var maxRepetitions = 20;

// The maxRepetitions argument is optional, and will be ignored unless using
// SNMP verison 2c
session.table (oid, maxRepetitions, responseCb);

session.tableColumns (oid, columns, [maxRepetitions], callback)

The tableColumns() method implements the same interface as the table() method. However, only the columns specified in the columns parameter will be in the resulting table.

This method should be used when only selected columns are required, and will be many times faster than the table() method since a much smaller amount of data will be fetched.

The following example fetches the ifTable (1.3.6.1.2.1.2.2) table, and specifies that only the ifDescr (1.3.6.1.2.1.2.2.1.2) and ifPhysAddress (1.3.6.1.2.1.2.2.1.6) columns should actually be fetched:

var oid = "1.3.6.1.2.1.2.2";
var columns = [2, 6];

function sortInt (a, b) {
    if (a > b)
        return 1;
    else if (b > a)
        return -1;
    else
        return 0;
}

function responseCb (error, table) {
    if (error) {
        console.error (error.toString ());
    } else {
        // This code is purely used to print rows out in index order,
        // ifIndex's are integers so we'll sort them numerically using
        // the sortInt() function above
        var indexes = [];
        for (index in table)
            indexes.push (parseInt (index));
        indexes.sort (sortInt);
        
        // Use the sorted indexes we've calculated to walk through each
        // row in order
        for (var i = 0; i < indexes.length; i++) {
            // Like indexes we sort by column, so use the same trick here,
            // some rows may not have the same columns as other rows, so
            // we calculate this per row
            var columns = [];
            for (column in table[indexes[i]])
                columns.push (parseInt (column));
            columns.sort (sortInt);
            
            // Print index, then each column indented under the index
            console.log ("row for index = " + indexes[i]);
            for (var j = 0; j < columns.length; j++) {
                console.log ("   column " + columns[j] + " = "
                        + table[indexes[i]][columns[j]]);
            }
        }
    }
}

var maxRepetitions = 20;

// The maxRepetitions argument is optional, and will be ignored unless using
// SNMP verison 2c
session.tableColumns (oid, columns, maxRepetitions, responseCb);

session.trap (typeOrOid, [varbinds], [agentAddrOrOptions], callback)

The trap() method sends a SNMP trap.

The typeOrOid parameter can be one of two types; one of the constants defined in the snmp.TrapType object (excluding the snmp.TrapType.EnterpriseSpecific constant), or an OID string.

For SNMP version 1 when a constant is specified the following fields are set in the trap:

  • The enterprise field is set to the OID 1.3.6.1.4.1
  • The generic-trap field is set to the constant specified
  • The specific-trap field is set to 0

When an OID string is specified the following fields are set in the trap:

  • The final decimal is stripped from the OID string and set in the specific-trap field
  • The remaining OID string is set in the enterprise field
  • The generic-trap field is set to the constant snmp.TrapType.EnterpriseSpecific

In both cases the time-stamp field in the trap PDU is set to the value returned by the process.uptime () function multiplied by 100.

SNMP version 2c messages are quite different in comparison with version 1. The version 2c trap has a much simpler format, simply a sequence of varbinds. The first varbind to be placed in the trap message will be for the sysUptime.0 OID (1.3.6.1.2.1.1.3.0). The value for this varbind will be the value returned by the process.uptime () function multiplied by 100 (this can be overridden by providing upTime in the optional options parameter, as documented below).

This will be followed by a second varbind for the snmpTrapOID.0 OID (1.3.6.1.6.3.1.1.4.1.0). The value for this will depend on the typeOrOid parameter. If a constant is specified the trap OID for the constant will be used as supplied for the varbinds value, otherwise the OID string specified will be used as is for the value of the varbind.

The optional varbinds parameter is an array of varbinds to include in the trap, and defaults to the empty array [].

The optional agentAddrOrOptions parameter can be one of two types; one is the IP address used to populate the agent-addr field for SNMP version 1 type traps, and defaults to 127.0.0.1, or an object, and can contain the following items:

  • agentAddr - IP address used to populate the agent-addr field for SNMP version 1 type traps, and defaults to 127.0.0.1
  • upTime - Value of the sysUptime.0 OID (1.3.6.1.2.1.1.3.0) in the trap, defaults to the value returned by the process.uptime () function multiplied by 100

NOTE When using SNMP version 2c the agentAddr parameter is ignored if specified since version 2c trap messages do not have an agent-addr field.

The callback function is called once the trap has been sent, or an error occurred. The following arguments will be passed to the callback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred

The following example sends an enterprise specific trap to a remote host using a SNMP version 1 trap, and includes the sysName (1.3.6.1.2.1.1.5.0) varbind in the trap. Before the trap is sent the agentAddr field is calculated using DNS to resolve the hostname of the local host:

var enterpriseOid = "1.3.6.1.4.1.2000.1"; // made up, but it may be valid

var varbinds = [
    {
        oid: "1.3.6.1.2.1.1.5.0",
        type: snmp.ObjectType.OctetString,
        value: "host1"
    }
];

dns.lookup (os.hostname (), function (error, agentAddress) {
    if (error) {
        console.error (error);
    } else {
        // Override sysUpTime, specfiying it as 10 seconds...
        var options = {agentAddr: agentAddress, upTime: 1000};
        session.trap (enterpriseOid, varbinds, agentAddress,
                function (error) {
            if (error)
                console.error (error);
        });
    }
});

The following example sends a generic link-down trap to a remote host using a SNMP version 1 trap, it does not include any varbinds or specify the agentAddr parameter:

session.trap (snmp.TrapType.LinkDown, function (error) {
    if (error)
        console.error (error);
});

The following example sends an enterprise specific trap to a remote host using a SNMP version 2c trap, and includes two enterprise specific varbinds:

var trapOid = "1.3.6.1.4.1.2000.1";

var varbinds = [
    {
        oid: "1.3.6.1.4.1.2000.2",
        type: snmp.ObjectType.OctetString,
        value: "Hardware health status changed"
    },
    {
        oid: "1.3.6.1.4.1.2000.3",
        type: snmp.ObjectType.OctetString,
        value: "status-error"
    }
];

// version 2c should have been specified when creating the session
session.trap (trapOid, varbinds, function (error) {
    if (error)
        console.error (error);
});

session.walk (oid, [maxRepetitions], feedCallback, doneCallback)

The walk() method fetches the value for all OIDs lexicographically following a specified OID in the MIB tree.

For SNMP version 1 repeated get() calls are made until the end of the MIB tree is reached. For SNMP version 2c repeated getBulk() calls are made until the end of the MIB tree is reached.

The oid parameter is an OID string. The optional maxRepetitions parameter is passed to getBulk() requests when SNMP version 2c is being used.

This method will not call a single callback once all OID values are fetched. Instead the feedCallback function will be called each time a response is received from the remote host. The following arguments will be passed to the feedCallback function:

  • varbinds - Array of varbinds, and will contain at least one varbind

Each varbind must be checked for an error condition using the snmp.isVarbindError() function when using SNMP version 2c.

Once the end of the MIB tree has been reached, or an error has occurred, the doneCallback function will be called. The following arguments will be passed to the doneCallback function:

  • error - Instance of the Error class or a sub-class, or null if no error occurred

Once the doneCallback function has been called the request is complete and the feedCallback function will no longer be called.

If the feedCallback function returns a true value when called no more get() or getBulk() method calls will be made and the doneCallback will be called.

The following example walks to the end of the MIB tree starting from the ifTable (1.3.6.1.2.1.2.2) OID:

var oid = "1.3.6.1.2.1.2.2";

function doneCb (error) {
    if (error)
        console.error (error.toString ());
}

function feedCb (varbinds) {
    for (var i = 0; i < varbinds.length; i++) {
        if (snmp.isVarbindError (varbinds[i]))
            console.error (snmp.varbindError (varbinds[i]));
        else
            console.log (varbinds[i].oid + "|" + varbinds[i].value);
    }
}

var maxRepetitions = 20;

// The maxRepetitions argument is optional, and will be ignored unless using
// SNMP verison 2c
session.walk (oid, maxRepetitions, feedCb, doneCb);

Application: Notification Receiver

RFC 3413 classifies a "Notification Receiver" SNMP application that receives "Notification-Class" PDUs. Notifications include both SNMP traps and informs. This library is able to receive all types of notification PDU:

  • Trap-PDU (original v1 trap PDUs, which are now considered obselete)
  • Trapv2-PDU (unacknowledged notifications)
  • InformRequest-PDU (same format as Trapv2-PDU but with message acknowledgement)

The library provides a Receiver class for receiving SNMP notifications. This module exports the createReceiver() function, which creates a new Receiver instance.

The receiver creates an Authorizer instance to control incoming access. More detail on this is found below in the Authorizer Module section below.

snmp.createReceiver (options, callback)

The createReceiver() function instantiates and returns an instance of the Receiver class:

// Default options
var options = {
    port: 162,
    disableAuthorization: false,
    includeAuthentication: false,
    accessControlModelType: snmp.AccessControlModelType.None,
    engineID: "8000B98380XXXXXXXXXXXXXXXXXXXXXXXX", // where the X's are random hex digits
    address: null,
    transport: "udp4"
};

var callback = function (error, notification) {
    if ( error ) {
        console.error (error);
    } else {
        console.log (JSON.stringify(notification, null, 2));
    }
};

receiver = snmp.createReceiver (options, callback);

The options and callback parameters are mandatory. The options parameter is an object, possibly empty, and can contain the following fields:

  • port - the port to listen for notifications on - defaults to 162. Note that binding to port 162 on some systems requires the receiver process to be run with administrative privilege. If this is not possible then choose a port greater than 1024.
  • disableAuthorization - disables local authorization for all community-based notifications received and for those user-based notifications received with no message authentication or privacy (noAuthNoPriv) - defaults to false
  • engineID - the engineID used for SNMPv3 communications, given as a hex string - defaults to a system-generated engineID containing elements of random
  • transport - the transport family to use - defaults to udp4
  • address - the IP address to bind to - default to null, which means bind to all IP addresses
  • includeAuthentication - adds the community (v1/2c) or user name (v3) information to the notification callback - defaults to false
  • sockets - an array of objects containing triples of transport, address and port that can be used to specify multiple socket listeners. This option overrides any individual transport, address and port options.

The callback parameter is a callback function of the form function (error, notification). On an error condition, the notification parameter is set to null. On successful reception of a notification, the error parameter is set to null, and the notification parameter is set as an object with the notification PDU details in the pdu field and the sender socket details in the rinfo field. For example:

{
    "pdu": {
        "type": 166,
        "id": 45385686,
        "varbinds": [
            {
                "oid": "1.3.6.1.2.1.1.3.0",
                "type": 67,
                "value": 5
            },
            {
                "oid": "1.3.6.1.6.3.1.1.4.1.0",
                "type": 6,
                "value": "1.3.6.1.6.3.1.1.5.2"
            }
        ],
        "scoped": false
    },
    "rinfo": {
        "address": "127.0.0.1",
        "family": "IPv4",
        "port": 43162,
        "size": 72
    }
}

receiver.getAuthorizer ()

Returns the receiver's Authorizer instance, used to control access to the receiver. See the Authorizer section for further details.

receiver.close (callback)

Closes the receiver's listening socket(s), ending the operation of the receiver. The optionnal callback parameter is a callback function of the form function (socket), which will be called once for each socket that the receiver is listening on, after the socket is closed. The socket argument will be given as an object triple of address, family and port.

Application: SNMP Agent

The SNMP agent responds to all four "request class" PDUs relevant to a Command Responder application:

  • GetRequest - request exactly matched OID instances
  • GetNextRequest - request lexicographically "next" OID instances in the MIB tree
  • GetBulkRequest - request a series of "next" OID instances in the MIB tree
  • SetRequest - set values for specified OIDs

The agent sends a GetResponse PDU to all four request PDU types, in conformance with RFC 3416.

The agent - like the notification receiver - maintains an Authorizer instance to control access to the agent, details of which are in the Authorizer Module section below.

The central data structure that the agent maintains is a Mib instance, the API of which is detailed in the Mib Module section below. The agent allows the MIB to be queried and manipulated through the API, as well as queried and manipulated through the SNMP interface with the above four request-class PDUs.

The agent also supports SNMP proxy forwarder applications with its singleton Forwarder instance, which is documented in the Forwarder Module section below.

snmp.createAgent (options, callback, mib)

The createAgent() function instantiates and returns an instance of the Agent class:

// Default options
var options = {
    port: 161,
    disableAuthorization: false,
    accessControlModelType: snmp.AccessControlModelType.None,
    engineID: "8000B98380XXXXXXXXXXXXXXXXXXXXXXXX", // where the X's are random hex digits
    address: null,
    transport: "udp4"
};

var callback = function (error, data) {
    if ( error ) {
        console.error (error);
    } else {
        console.log (JSON.stringify(data, null, 2));
    }
};

agent = snmp.createAgent (options, callback);

The options and callback parameters are mandatory. The options parameter is an object, possibly empty, and can contain the following fields:

  • port - the port for the agent to listen on - defaults to 161. Note that binding to port 161 on some systems requires the receiver process to be run with administrative privilege. If this is not possible, then choose a port greater than 1024.
  • disableAuthorization - disables local authorization for all community-based notifications received and for those user-based notifications received with no message authentication or privacy (noAuthNoPriv) - defaults to false
  • accessControlModelType - specifies which access control model to use. Defaults to snmp.AccessControlModelType.None, but can be set to snmp.AccessControlModelType.Simple for further access control capabilities. See the Authorization class description for more information.
  • engineID - the engineID used for SNMPv3 communications, given as a hex string - defaults to a system-generated engineID containing elements of random
  • transport - the transport family to use - defaults to udp4
  • address - the IP address to bind to - default to null, which means bind to all IP addresses
  • sockets - an array of objects containing triples of transport, address and port that can be used to specify multiple socket listeners. This option overrides any individual transport, address and port options.

The mib parameter is optional, and sets the agent's singleton Mib instance. If not supplied, the agent creates itself a new empty Mib singleton. If supplied, the Mib instance needs to be created and populated as per the Mib Module section below.

agent.getAuthorizer ()

Returns the agent's singleton Authorizer instance, used to control access to the agent. See the Authorizer section for further details.

agent.getMib ()

Returns the agent's singleton Mib instance, which holds all of the management data for the agent.

agent.setMib (mib)

Sets the agent's singleton Mib instance to the supplied one. The agent discards its existing Mib instance.

agent.getForwarder ()

Returns the agent's singleton Forwarder instance, which holds a list of registered proxies that specify context-based forwarding to remote hosts.

agent.close (callback)

Closes the agent's listening socket(s), ending the operation of the agent. The optionnal callback parameter is a callback function of the form function (socket), which will be called once for each socket that the agent is listening on, after the socket is closed. The socket argument will be given as an object triple of address, family and port.

Authorizer Module

Both the receiver and agent maintain an singleton Authorizer instance, which is responsible for maintaining an authorization list of SNMP communities (for v1 and v2c notifications) and also an authorization list of SNMP users (for v3 notifications). These lists are used to authorize notification access to the receiver, and to store security protocol and key settings. RFC 3414 terms the user list as the the "usmUserTable" stored in the receiver's "Local Configuration Database".

If a v1 or v2c notification is received with a community that is not in the receiver's community authorization list, the receiver will not accept the notification, instead returning a error of class RequestFailedError to the supplied callback function. Similarly, if a v3 notification is received with a user whose name is not in the receiver's user authorization list, the receiver will return a RequestFailedError. If the disableAuthorization option is supplied for the receiver on start-up, then these local authorization list checks are disabled for community notifications and noAuthNoPriv user notifications. Note that even with this setting, the user list is still checked for authNoPriv and authPriv notifications, as the library still requires access to the correct keys for the message authentication and encryption operations, and these keys are stored against a user in the user authorization list.

The API allows the receiver's / agent's community authorization and user authorization lists to be managed with adds, queries and deletes.

For an agent, there is a further optional access control check, that can limit the access for a given community or user according to the AccessControlModelType supplied as an option to the agent. The default model type is snmp.AccessControlModelType.None, which means that - after the authorization list checks described in the preceding paragraphs - there is no further access control restrictions i.e. all requests are granted access by the agent. A second access control model type snmp.AccessControlModelType.Simple can be selected, which creates a SimpleAccessControlModel object that can be manipulated to specify that a community or user has one of three levels of access to agent information:

  • none
  • read-only
  • read-write

More information on how to configure access with the SimpleAccessControlModel class is provided below under the description of that class.

The authorizer instance can be obtained by using the getAuthorizer() call, for both the receiver and the agent. For example:

receiver.getAuthorizer ().getCommunities ();

authorizer.addCommunity (community)

Adds a community string to the receiver's community authorization list. Does nothing if the community is already in the list, ensuring there is only one occurence of any given community string in the list.

authorizer.getCommunity (community)

Returns a community string if it is stored in the receiver's community authorization list, otherwise returns null.

authorizer.getCommunities ()

Returns the receiver's community authorization list.

authorizer.deleteCommunity (community)

Deletes a community string from the receiver's community authorization list. Does nothing if the community is not in the list.

authorizer.addUser (user)

Adds a user to the receiver's user authorization list. If a user of the same name is in the list, this call deletes the existing user, and replaces it with the supplied user, ensuring that only one user with a given name will exist in the list. The user object is in the same format as that used for the session.createV3Session() call.

var user = {
    name: "elsa",
    level: snmp.SecurityLevel.authPriv,
    authProtocol: snmp.AuthProtocols.sha,
    authKey: "imlettingitgo",
    privProtocol: snmp.PrivProtocols.des,
    privKey: "intotheunknown"
};

receiver.getAuthorizer ().addUser (elsa);

authorizer.getUser (userName)

Returns a user object if a user with the supplied name is stored in the receiver's user authorization list, otherwise returns null.

authorizer.getUsers ()

Returns the receiver's user authorization list.

authorizer.deleteUser (userName)

Deletes a user from the receiver's user authorization list. Does nothing if the user with the supplied name is not in the list.

authorizer.getAccessControlModelType ()

Returns the snmp.AccessControlModelType of this authorizer, which is one of:

  • snmp.AccessControlModelType.None
  • snmp.AccessControlModelType.Simple

authorizer.getAccessControlModel ()

Returns the access control model object:

  • for a type of snmp.AccessControlModelType.None - returns null (as the access control check returns positive every time)
  • for a type of snmp.AccessControlModelType.Simple - returns a SimpleAccessControlModel object

Simple Access Control Model

The SimpleAccessControlModel class can be optionally selected as the access control model used by an Agent. The SimpleAccessControlModel provides basic three-level access control for a given community or user. The access levels are specified in the snmp.AccessLevel constant:

  • snmp.AccessLevel.None - no access is granted to the community or user
  • snmp.AccessLevel.ReadOnly - access is granted for the community or user for Get, GetNext and