neo4j-fiber
v1.0.4
Published
Most advanced and efficient Neo4j REST API Driver, with support of https and GrapheneDB
Downloads
17
Maintainers
Readme
Most advanced, well documented and efficient REST client for Neo4j database, with 100% tests coverage. Fibers allows to give a new level experience to developers, no more callback-hell and blocking operations. Speed and low resources consumption is top priority of neo4j-fiber package.
- 100% tests coverage
- Version for Meteor.js - https://atmospherejs.com/ostrio/neo4jdriver
- This this library is heavily depends from Fibers, so you required to wrap all code into Fiber, see example
- This package uses batch operations to perform queries. Batch operations lets you execute multiple API calls through a single HTTP call. This improves performance for large insert and update operations significantly
- This package was tested and works like a charm with GrapheneDB
- To find more about how to use Cypher read Neo4j cheat sheet
Installation
npm install --save neo4j-fiber
Demo Apps
- Hosted at Heroku (GrapheneDB Add-on)
- Check out it's source code
API:
Please see full API with examples in our wiki
Basic Usage Examples
Connect to Neo4j
const Neo4jDB = require('neo4j-fiber').Neo4jDB;
const db = new Neo4jDB('http://localhost:7474', {
username: 'neo4j',
password: '1234'
});
Set connection URL via environment variables
Set NEO4J_URL
or GRAPHENEDB_URL
to as connection URL to Neo4j Database
NEO4J_URL="http://neo4j:1234@localhost:7474" node index.js
If environment variable is set, no need to pass url
argument into Neo4jDB
constructor
const Neo4jDB = require('neo4j-fiber').Neo4jDB;
const db = new Neo4jDB();
Run simple query
const cursor = db.query('CREATE (n:City {props}) RETURN n', {
props: {
title: 'Ottawa',
lat: 45.416667,
long: -75.683333
}
});
console.log(cursor.fetch());
// Returns array of nodes:
// [{
// n: {
// long: -75.683333,
// lat: 45.416667,
// title: "Ottawa",
// id: 8421,
// labels": ["City"],
// metadata: {
// id: 8421,
// labels": ["City"]
// }
// }
// }]
// Iterate through results as plain objects:
cursor.forEach((node) => {
console.log(node)
// Returns node as Object:
// {
// n: {
// long: -75.683333,
// lat: 45.416667,
// title: "Ottawa",
// id: 8421,
// labels": ["City"],
// metadata: {
// id: 8421,
// labels": ["City"]
// }
// }
// }
});
// Iterate through cursor as `Neo4jNode` instances:
cursor.each((node) => {
console.log(node.n.get());
// {
// long: -75.683333,
// lat: 45.416667,
// title: "Ottawa",
// id: 8421,
// labels": ["City"],
// metadata: {
// id: 8421,
// labels": ["City"]
// }
// }
});
Create node
const node = db.nodes();
const node2 = db.nodes({property: 'value', property2: ['val', 'val2', 'val3']});
Get node by id
const node = db.nodes(123);
Delete node
node.delete();
Create relationship
const n1 = db.nodes();
const relationship = db.nodes().to(n1, "KNOWS", {property: 'value'});
Delete relationship
relationship.delete();
Cities example
// Create some data:
const cities = {};
cities['Zürich'] = db.nodes({
title: 'Zürich',
lat: 47.27,
long: 8.31
}).label(['City']);
cities['Tokyo'] = db.nodes({
title: 'Tokyo',
lat: 35.40,
long: 139.45
}).label(['City']);
cities['Athens'] = db.nodes({
title: 'Athens',
lat: 37.58,
long: 23.43
}).label(['City']);
cities['Cape Town'] = db.nodes({
title: 'Cape Town',
lat: 33.55,
long: 18.22
}).label(['City']);
// Add relationship between cities
// At this example we set distance
cities['Zürich'].to(cities['Tokyo'], "DISTANCE", {m: 9576670, km: 9576.67, mi: 5950.67});
cities['Tokyo'].to(cities['Zürich'], "DISTANCE", {m: 9576670, km: 9576.67, mi: 5950.67});
// Create route 1 (Zürich -> Athens -> Cape Town -> Tokyo)
cities['Zürich'].to(cities['Athens'], "ROUTE", {m: 1617270, km: 1617.27, mi: 1004.93, price: 50});
cities['Athens'].to(cities['Cape Town'], "ROUTE", {m: 8015080, km: 8015.08, mi: 4980.34, price: 500});
cities['Cape Town'].to(cities['Tokyo'], "ROUTE", {m: 9505550, km: 9505.55, mi: 5906.48, price: 850});
// Create route 2 (Zürich -> Cape Town -> Tokyo)
cities['Zürich'].to(cities['Cape Town'], "ROUTE", {m: 1617270, km: 1617.27, mi: 1004.93, price: 550});
cities['Cape Town'].to(cities['Tokyo'], "ROUTE", {m: 9576670, km: 9576.67, mi: 5950.67, price: 850});
// Create route 3 (Zürich -> Athens -> Tokyo)
cities['Zürich'].to(cities['Athens'], "ROUTE", {m: 1617270, km: 1617.27, mi: 1004.93, price: 50});
cities['Athens'].to(cities['Tokyo'], "ROUTE", {m: 9576670, km: 9576.67, mi: 5950.67, price: 850});
// Get Shortest Route (in km) between two Cities:
const shortest = cities['Zürich'].path(cities['Tokyo'], "ROUTE", {cost_property: 'km', algorithm: 'dijkstra'})[0];
let shortestStr = 'Shortest from Zürich to Tokyo, via: ';
shortest.nodes.forEach((id) => {
shortestStr += db.nodes(id).property('title') + ', ';
});
shortestStr += '| Distance: ' + shortest.weight + ' km';
console.info(shortestStr); // <-- Shortest from Zürich to Tokyo, via: Zürich, Cape Town, Tokyo, | Distance: 11122.82 km
// Get Cheapest Route (in notional currency) between two Cities:
const cheapest = cities['Zürich'].path(cities['Tokyo'], "ROUTE", {cost_property: 'price', algorithm: 'dijkstra'})[0];
let cheapestStr = 'Cheapest from Zürich to Tokyo, via: ';
cheapest.nodes.forEach((id) => {
cheapestStr += db.nodes(id).property('title') + ', ';
});
cheapestStr += '| Price: ' + cheapest.weight + ' nc';
console.info(cheapestStr); // <-- Cheapest from Zürich to Tokyo, via: Zürich, Athens, Tokyo, | Price: 900 nc
For more complex examples and docs, please see our wiki