naturallanguageprocessinglibrarybypashka
v1.0.1
Published
Create a library for natural language processing tasks such as sentiment analysis, text classification, and named entity recognition. This could be a valuable resource for developers working on text-heavy applications like chatbots or content analysis too
Downloads
1
Readme
PDF Generator
A simple yet powerful PDF generation tool written in TypeScript.
Installation
npm install pdf-generator
Usage
const PDFGenerator = require("pdf-generator");
// Create a new PDFGenerator instance
const pdfGenerator = new PDFGenerator();
// Add content to the PDF
pdfGenerator
.addText("Hello, this is a PDF generated using PDFGenerator!", {
fontSize: 20,
align: "center",
})
.addPage()
.addText("This is page 2 of the PDF.", {
y: 100,
align: "center",
});
// Save the PDF
pdfGenerator.save();
API
PDFGenerator(options?: PDFGeneratorOptions)
Creates a new instance of PDFGenerator with optional options.
options.filename
: Specify the filename for the generated PDF. Default is'output.pdf'
.
addText(text: string, options?: TextOptions): PDFGenerator
Adds text to the PDF document.
text
: The text content to add.options
: Optional parameters for text formatting, such as fontSize, font, alignment, etc.
addPage(): PDFGenerator
Adds a new page to the PDF document.
save(): void
Saves the PDF document to the specified filename.
Example
Check the example
directory for an example usage of the PDFGenerator.
License
This project is licensed under the MIT License - see the LICENSE file for details.
# Natural Language Processing Library
A JavaScript library for performing natural language processing (NLP) tasks such as sentiment analysis, text classification, and entity extraction.
## Installation
Install the package from npm:
```bash
npm install --save nlp-library
```
## Usage
Import the NlpLibrary class into your JavaScript code:
```javascript
const NlpLibrary = require('nlp-library');
```
Create an instance of the NlpLibrary class:
```javascript
const nlp = new NlpLibrary();
```
Analyze sentiment of a text:
```javascript
const sentimentScore = nlp.analyzeSentiment('I love JavaScript!');
console.log('Sentiment score:', sentimentScore);
```
Classify text:
```javascript
const classificationResult = nlp.classifyText('How to learn JavaScript?');
console.log('Classification result:', classificationResult);
```
Extract entities from text:
```javascript
const entities = nlp.extractEntities('JavaScript is a programming language.');
console.log('Entities:', entities);
```
## API
### `analyzeSentiment(text: string): number`
Analyzes the sentiment of the given text and returns a sentiment score.
- `text`: The text to analyze.
### `classifyText(text: string): string`
Classifies the given text and returns a classification result.
- `text`: The text to classify.
### `extractEntities(text: string): string[]`
Extracts entities from the given text and returns a list of entities.
- `text`: The text to analyze.
## License
This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.