nats-topology-runner
v0.7.1
Published
Run a topology created with topology-runner using nats-jobs
Downloads
432
Maintainers
Readme
NATS Topology Runner
Run a job using nats-jobs
and topology-runner.
Exports the function runTopologyWithNats
that runs a topology and
resumes the topology based on loadSnapshot
. Uniqueness can be determined
by using getStreamDataFromMsg
to extract stream
and streamSequence
from the message.
runTopologyWithNats
Returns a fn that takes a JsMsg and runs the topology with the data off the message. Automatically resumes a topology if a snapshot exists with the topologyId and it was not run to completion. Regardless of whether the topology succeeds or fails, the last snapshot will be persisted and awaited.
The example below uses an in-memory database called loki
. In a real-world
scenario you would want to use something like MongoDB or Redis.
If you topology executes fast enough you may want to use the debounceMs
option to prevent the possibility of out-of-order writes to the datastore.
import {
runTopologyWithNats,
getStreamDataFromMsg,
StreamSnapshot,
Fns,
} from 'nats-topology-runner'
import { JsMsg, JSONCodec } from 'nats'
import { expBackoff, JobDef, jobProcessor } from 'nats-jobs'
import { DAG, RunFn, Spec } from 'topology-runner'
import loki from 'lokijs'
import _ from 'lodash/fp'
const db = new loki('test.db')
const topology = db.addCollection<StreamSnapshot & { topologyId: string }>(
'topology'
)
const scraper = db.addCollection('scraper')
const jc = JSONCodec()
const dag: DAG = {
api: { deps: [] },
details: { deps: ['api'] },
attachments: { deps: ['api'] },
writeToDB: { deps: ['details', 'attachments'] },
}
const spec: Spec = {
nodes: {
api: {
run: async () => [1, 2, 3],
},
details: {
run: async ({ data }) => {
const ids: number[] = data[0]
return ids.reduce(
(acc, n) => _.set(n, { description: `description ${n}` }, acc),
{}
)
},
},
attachments: {
run: async ({ data }) => {
const ids: number[] = data[0]
return ids.reduce(
(acc, n) => _.set(n, { file: `file${n}.jpg` }, acc),
{}
)
},
},
writeToDB: {
run: async ({ data }) => {
scraper.insert(_.mergeAll(data))
},
},
},
}
const loadSnapshot = (topologyId: string) =>
topology.findOne({ topologyId }) || undefined
const persistSnapshot = (topologyId: string, snapshot: StreamSnapshot) => {
const existing = topology.findOne({ topologyId })
if (existing) {
// Loki adds a meta field which must be stripped from the snapshot
topology.update({ ...existing, ...stripLoki(snapshot) })
} else {
topology.insertOne({ ...snapshot, topologyId })
}
}
const fns: Fns = {
unpack: jc.decode,
persistSnapshot,
loadSnapshot,
}
const perform = runTopologyWithNats(spec, dag, fns)
const def: JobDef = {
stream: 'scraper',
backoff: expBackoff(1000),
perform,
}
const processor = await jobProcessor()
processor.start(def)