npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

native_math

v2.1.1

Published

NATIVE MATH: A tiny math library for node.js, deno.js & JavaScript on browser

Downloads

11

Readme

NATIVE MATH

License: MIT native_math version npm bundle size (scoped) npm npm

NATIVE MATH: A tiny math library for node.js, deno, bun & JavaScript on browser

Installation

npm install native_math

http://placehold.jp/24/cb0101/ffffff/280x45.png?text=npm%20install%20native_math

yarn add native_math

http://placehold.jp/24/25799f/ffffff/280x45.png?text=yarn%20add%20native_math

<script src="https://cdn.jsdelivr.net/npm/native_math/index.js"></script>

http://placehold.jp/24/bd483b/fec82f/785x45.png?text=%3Cscript%20src%3D%22https%3A%2F%2Fcdn.jsdelivr.net%2Fnpm%2Fnative_math%22%3E%3C%2Fscript%3E

Some solutions provided by native math library

// JavaScript
0.1 + 0.2 = 0.30000000000000004   // 0.1 + 0.2 === 0.3 returns false
0.2 + 0.7 = 0.8999999999999999    // 0.2 + 0.7 === 0.9 returns false
0.7 - 0.2 = 0.49999999999999994   // 0.7 - 0.2 === 0.5 returns false
0.1 * 0.2 = 0.020000000000000004  // 0.1 * 0.2 === 0.02 returns false
0.3 / 0.1 = 2.9999999999999996    // 0.3 / 0.1 === 3 returns false
1.2 % 0.5 = 0.19999999999999996   // 1.2 / 0.5 === 0.2 returns false

// NATIVE MATH library
nm.add(0.1, 0.2)   = 0.3      // nm.add(0.1, 0.2)  === 0.3 returns true
nm.add(0.2, 0.7)   = 0.9      // nm.add(0.2, 0.7)  === 0.9 returns true
nm.subt(0.7, 0.2)  = 0.5      // nm.subt(0.7, 0.2) === 0.5 returns true
nm.mult(0.1, 0.2)  = 0.02     // nm.mult(0.1, 0.2) === 0.02 returns true
nm.divi(0.3, 0.1)  = 3        // nm.divi(0.3, 0.1) === 3 returns true
nm.rem(1.2, 0.5)   = 0.2      // nm.rem(1.2, 0.5)  === 0.2 returns true
<!-- html -->
<!DOCTYPE html>
<html>
	<head>
		<title>NATIVE MATH</title>
		<!--<script src="https://cdn.jsdelivr.net/npm/[email protected]/index.js"></script>-->
		<script src="https://cdn.jsdelivr.net/npm/native_math/index.min.js"></script>
		<!--                This link is the latest mini version ☝                -->
	</head>
	<body>
		<script>
			let myNumber = 0.1;
			const myCube = nm.cube(myNumber);
			// nm.cube(0.1) returns 0.001
			console.log(`(${myNumber})^3 returns ${myCube} in native math library`);
			// Math.pow(0.1, 3) or (0.1 * 0.1 * 0.1) returns 0.0010000000000000002
			console.log(`(${myNumber})^3 returns ${Math.pow(myNumber, 3)} in JavaScript`);
		</script>
	</body>
</html>
// Next JS
// index.js
// npm install native_math
import nm from 'native_math';
import React from 'react';

const Home = () => {

  const price = 4.5 / 3;

  return (
    <div>
      <ul>
        <li>{nm.add([1,8], 1).[1]}</li>
        <li>{nm.fix(1, 2)}</li>
        <li>{nm.fix(nm.phi,2)}</li>
        <li>{nm.stn('8.00')}</li>
        <li>{nm.zeros(2,2)}</li>
        <li>{nm.zeros(2.1,2)}</li>
        <li>{nm.zeros(2.1440000000,2)}</li>
        <li>{nm.zeros(2.1440000000,5)}</li>
        <li>${nm.zeros(price,2)}</li>
        <li>
            <a
              className="App-link"
              href="https://www.npmjs.com/package/native_math"
              target="_blank"
              rel="noopener noreferrer"
            >
              Learn NATIVE MATH Library
            </a>
        </li>
      </ul>
    </div>
  );
};

export default Home;
// React JS
// App.js
// npm install native_math
import { divi, zeros, stn, nts } from 'native_math';
import logo from './logo.svg';
import './App.css';

function App() {
	const price = divi(4.2, 3);
	const priceWithFormat = zeros(price, 2);

	return (
		<div className="App">
			<header className="App-header">
				<img src={logo} className="App-logo" alt="logo" />
				<p>
					Edit <code>src/App.js</code> and save to reload.
				</p>
				<a className="App-link" href="https://reactjs.org" target="_blank" rel="noopener noreferrer">
					Learn React
				</a>
				<br />
				<a className="App-link" href="https://www.npmjs.com/package/native_math" target="_blank" rel="noopener noreferrer">
					Learn NATIVE MATH Library
				</a>
				<h2>
					<p>${nts(0.0)}</p>
					Free ${zeros(stn('0.00'), 2)} <strike>${priceWithFormat}</strike>
				</h2>
				<small>Type: {typeof priceWithFormat}</small>
			</header>
		</div>
	);
}

export default App;
// Node JS
// index.js
// npm install native_math

// import nm from 'native_math';
// console.log(nm.sin.deg(nm.range(0, 90, 30)));
// Or

import { sin, range } from 'native_math';
console.log(sin.deg(range(0, 90, 30)));

Examples

Use console.log() to output the result. console.log(nm.abs(-3.6)); // 3.6

const nm = require(`native_math`);

nm.abs(-3.6); // 3.6

nm.subt(2, 5); // -3

nm.sqr(2) + nm.sqrt(4); // 6

nm.sqr(4) + nm.sqrt(4) / nm.pi; // 16.63661977236758

nm.e; // 2.718281828459045

nm.exp(1); // 2.718281828459045

nm.exp(-1); // 0.367879441171442

nm.exp(nm.pi / 3); // 2.849653908226361

nm.log(10); // 2.302585092994046

nm.ln2; // 0.693147180559945
nm.ln10; // 2.302585092994046

nm.log2e; // 1.442695040888963
nm.log10e; // 0.434294481903252

nm.log1p(5); // 1.791759469228055

nm.log(mnjs.e); // 1

nm.hypot(4); // 4
nm.hypot([4]); // 4
nm.hypot(3, 4); // 5
nm.hypot([3, 4]); // 5
nm.hypot(4, 2, 4); // 6
nm.hypot([4, 2, 4]); // 6
nm.hypot([-3, -4]); // 5
nm.hypot(-3, -4); // 5
nm.hypot([-4]); // 4
nm.hypot(-4); // 4
nm.sqrt(nm.add(nm.sqr(6), nm.sqr(8))) === nm.hypot(6, 8); // true
nm.hypot([-3, -4], 1); // Error: NATIVE MATH ERROR No. 01 : 05
mnjs.hypot([-3, -4], [1]); // Error: NATIVE MATH ERROR No. 01 : 05
mnjs.hypot([-3, -4, '1']); // Error: NATIVE MATH ERROR No. 01 : 05

nm.fix(2.718281828459045, 2); // 2.72

nm.inv(10); // 0.1

nm.ceil(1.1); // 2
nm.ceil(-1.1); // -1
nm.ceil([-0.2, 0, 0.2]); // [-0, 0, 1]

nm.max(1, 10, 3, -2); // 10
nm.max([1, 10, 3, -2]); // 10
nm.max(1, 10, 3, ''); // Error: NATIVE MATHnm ERROR No. 01 : 05

nm.min(5, 1, -3.2, 0.5, 3); // -3.2
nm.min([5, 1, -3.2, 0.5, 3]); // -3.2
nm.min(); // Error: NATIVE MATHnm ERROR No. 01 : 05
nm.min([]); // Error: NATIVE MATHnm ERROR No. 01 : 05: This function accepts numeric arguments or one numeric array argument. (num1, num2, ..., num) => {} or ([num1, num2, ..., num]) => {}

nm.pow(2, 4); // 16

nm.pow(2, -2.5); // 0.176776695296637

nm.cbrt(8); // 2

nm.nrt(0.0001, 4); // 0.1
nm.nrt(Infinity, Infinity); // 1
nm.nrt(Infinity, Infinity) === nm.pow(Infinity, 1 / Infinity); // true

nm.tau; // 6.283185307179586

nm.sin(1); // 0.841470984807897
nm.sin.rad(1); // 0.841470984807897
nm.sin(1) === nm.sin.rad(1); // true

nm.dtr(30); // 0.523598775598299
nm.sin.deg(30); // 0.5
nm.sin.deg(30) === nm.sin(mnjs.dtr(30)); // true

nm.cos.deg(60); // 0.5
nm.cos(0); // 1
nm.cos.rad(0); // 1
nm.cos(1) === nm.cos.rad(1); // true

nm.tan.deg(45); // 1

nm.tan(0.5); // 0.54630248984379
nm.tan(0.5) === nm.tan.rad(0.5); // true

nm.tan.deg(90); // -Infinity

1 / nm.sin.deg(30); // 2
nm.csc.deg(30)(
	// 2

	1 / nm.cos.deg(60)
) === nm.sec.deg(60); // true
console.log(nm.sec.deg(60))(
	// 2

	1 / nm.tan.deg(45)
) === nm.cot.deg(45); // true
nm.cot.deg(45); // 1

nm.cot.deg(0); // Infinity

nm.acsc(mnjs.csc(0.67)); // 0.67

nm.asec.rad(1) === nm.asec(1); // true

nm.stn('123'); // 123
nm.nts(123); // "123"

/***** Matrices *****/
nm.range(1, 10, 1); //  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
nm.range(1, 10); //  [ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 ]
nm.range(10, 1, 1); //  [ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]
nm.range(10, 1); //  [ 10, 9, 8, 7, 6, 5, 4, 3, 2, 1 ]
nm.range(1, 5, 0.5); //  [ 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5 ]
nm.range(1, 0, 0.2); //  [ 1, 0.8, 0.6, 0.4, 0.2, 0 ]
nm.range(10, 1, 2); //  [ 10, 8, 6, 4, 2 ]
nm.range(-20, 1, 0); //  Error: NATIVE MATH ERROR No. 02 : 01: The step parameter should not be:
//  1/ null
//  2/ equal or less than zero.
//  3/ greater than the absolute difference between the first and second parameter

nm.monolist(1, 5); //  [ 1, 1, 1, 1, 1 ]
nm.monolist(0.5, 3); //  [ 0.5, 0.5, 0.5 ]
nm.monolist(0, 5); //  [ 0, 0, 0, 0, 0 ]
nm.monolist(-0.5, 3); //  [ -0.5, -0.5, -0.5 ]
nm.monolist(-1, 5); //  [ -1, -1, -1, -1, -1 ]
nm.monolist(5, 1.1); //  RangeError: Invalid array length

// Most of the NATIVE MATH functions return a number or an array of numbers

const myArray = nm.range(0, 90, 30);
const errArray = [0, 30, '60', 90];

myArray; //  [ 0, 30, 60, 90 ]
errArray; //  [ 0, 30, '60', 90 ]

nm.cube(myArray); // [ 0, 27000, 216000, 729000 ]

nm.sin.deg(myArray[1]); // 0.5
nm.sin.deg(myArray); // [ 0, 0.5, 0.866025403784439, 1 ]

nm.abs(errArray); // Error: NATIVE MATHnm ERROR No. 01: This function accepting either a number or an array.
// In the case of an array, all of its elements must be numbers.
nm.dtr(myArray); // [ 0, 0.523598775598299, 1.047197551196598, 1.570796326794897 ]

// Note the result may change in some functions depending on the position of the arguments

nm.add(2, 2); //  4
nm.add([0, 2], [4, 8]); //  [ 4, 10 ]
nm.add([4, 8], [0, 2]); //  [ 4, 10 ]
nm.add(2, [1, 2]); //  [ 3, 4 ]
nm.add([1, 2], 2); //  [ 3, 4 ]
nm.subt(2, [1, 2]); //  [ 1, 0 ]
nm.subt([1, 2], 2); //  [ -1, 0 ]
nm.subt([0, 2], [4, 8]); //  [ -4, -6 ]
nm.subt([4, 8], [0, 2]); //  [ 4, 6 ]
nm.mult(2, [1, 2]); //  [ 2, 4 ]
nm.mult([1, 2], 2); //  [ 2, 4 ]
nm.divi(2, [1, 2]); //  [ 2, 1 ]
nm.divi([1, 2], 2); //  [ 0.5, 1 ]
nm.divi([0, 2], [4, 8]); //  [ 0, 0.25 ]
nm.divi([4, 8], [0, 2]); //  [ Infinity, 4 ]
nm.add([2], [1, 2]); // Error: NATIVE MATH ERROR No. 01 : 03: This function accepting two arguments of numbers, arrays, or one of them must be a number, and the other must be an array; In the case of arrays, all elements must be a number, the length of arrays must be equal

nm.pow(4, [1, 2, 3]); //  [ 4, 16, 64 ]
nm.pow([1, 2, 3], 4); //  [ 1, 16, 81 ]

nm.nrt(8, [1, 2, 3]); //  [ 8, 2.82842712474619, 2 ]
nm.nrt([1, 2, 3], 8); //  [ 1, 1.090507732665258, 1.147202690439877 ]
nm.nrt([1, 3], [3, 1]); //  [ 1, 3 ]
nm.nrt([3, 1], [1, 3]); //  [ 3, 1 ]

nm.mult(0.2, [5, 10, 15]); //  [ 1, 2, 3 ]
nm.mult(0.2, nm.range(5, 15, 5)); //  [ 1, 2, 3 ]
nm.mult([0.2, 0.2, 0.2], [5, 10, 15]); //  [ 1, 2, 3 ]
nm.mult(nm.monolist(0.2, 3), [5, 10, 15]); //  [ 1, 2, 3 ]
nm.mult(0.2, [5, 10, 15])[1] === nm.mult(nm.monolist(0.2, 3), [5, 10, 15])[1]; // true

nm.imul(0xffffffff, [1, 2, 3, 4, 5]); //  [ -1, -2, -3, -4, -5 ]
nm.rib(100000, 999999); //  returns random integer between two values, inclusive min and max value

// Remember that:
// 0 / 0 = NaN, NaN / NaN = NaN, Infinity / Infinity = NaN, Infinity / NaN = NaN
// NaN / Infinity = NaN, 0 / NaN = NaN, NaN / 0 = Nan
// 0 / Infinity = 0, Infinity / 0 = Infinity
// Infinity === Infinity returns true. Infinity is equal to itself
// Infinity > Infinity, return false
// NaN === NaN, NaN > NaN, NaN < NaN, returns false
// Infinity === NaN, Infinity > NaN, Infinity < NaN, returns false

// The change function replace x (number or numeric array element) with z if x = y
// The change and change.isEqual functions are the same
// nm.change(x=1, y=1, z=0)
nm.change(1, 1, 0) === mnjs.change.isEqual(1, 1, 0); // returns true
nm.change(1, 1, 0); //  returns 0
nm.change(1, NaN, 0); //  returns 1
nm.change(Infinity, Infinity, 0); //  returns 0
nm.change([0, NaN, 1, Infinity], NaN, 0); //  returns [0, NaN, 1, Infinity]
// where [0 = old value, NaN = old value, 1 = old value, Infinity = old value], nothing changed!
nm.change([0, NaN, 1, Infinity], Infinity, 0); //  returns [0, NaN, 1, 0]
// where [0 = old value, NaN = old value, 1 = old value, 0 = new value ], only Infinity value replaced with 0

// The change.isNotEqual function replace x (number or numeric array element) with z if x is not equal to y
// nm.change.isNotEqual(x=1, y=1, z=0)
nm.change.isEqual(1, 1, 0) !== nm.change.isNotEqual(1, 1, 0); // returns true
nm.change.isNotEqual(1, 1, 0); //  returns 1, where 1 is the old value of x
nm.change.isNotEqual(1, NaN, 0); //  returns 0, where 0 is the new value of x
nm.change.isNotEqual(Infinity, Infinity, 0); //  returns Infinity
nm.change.isNotEqual([0, NaN, 1, Infinity], NaN, 0); //  returns [0, 0, 0, 0]
// where [0 = new value, 0 = new value, 0 = new value, 0 = new value], all elements changed with new values!
nm.change.isNotEqual([0, NaN, 1, Infinity], Infinity, 0); //  returns [0, 0, 0, Infinity]
// where [0 = new value, 0 = new value, 0 = new value, Infinity = old value ], all elements replaced with 0 except Infinity
nm.change.isGreater([0, NaN, 1, Infinity], NaN, 0); //  returns [0, NaN, 1, Infinity]
nm.change.isLess([0, NaN, 1, Infinity], NaN, 0); //  returns [0, NaN, 1, Infinity]
nm.change.isGreaterOrEqual([0, NaN, 1, Infinity], Infinity, 0); // returns [0, NaN, 1, 0]
// where orEqual is true (Infinity replaced by 0)
nm.change.isLessOrEqual([0, NaN, 1, Infinity], Infinity, 0); // returns [0, NaN, 0, 0]
// change.isFiniteNum(x, y) or change.isFiniteNum(xArray, y)
nm.change.isFiniteNum([0, NaN, 1, Infinity], Infinity); // returns [Infinity, NaN, Infinity, Infinity]
// where [Infinity = new value, NaN = old value, Infinity = new value, Infinity = old value]
nm.change.isInfinity([-Infinity, NaN, 1, Infinity], 0); // returns [0, NaN, 1, 0]  (change ±Infinity)
nm.change.isPlusInfinity([-Infinity, NaN, 1, Infinity], 0); // returns [-Infinity, NaN, 1, 0]
nm.change.isMinusInfinity([-Infinity, NaN, 1, Infinity], 0); // returns [0, NaN, 1, Infinity]
nm.change.isNAN([-Infinity, NaN, 1, Infinity], 0); // returns [-Infinity, 0, 1, Infinity]

// Fermat number
nm.fermat(-1) or nm.fermat(1.2) // returns error
nm.fermat(0) // returns 3
nm.fermat([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) // returns [5, 17, 257, ..., 1.3407807929942597e+154, Infinity]

Demo Projects


Svelte Demo Project [https://svelte-native-math-chartjs.vercel.app]


https://raw.githubusercontent.com/dr-montasir/public/main/native_math/images/svelte-native_math-chartjs.png


React Demo Project [https://react-native-math-plotlyjs.vercel.app]


https://raw.githubusercontent.com/dr-montasir/public/main/native_math/images/react-native_math-plotlyjs.png


Solid.js Demo Project [https://reactive-sine-function.vercel.app]


https://raw.githubusercontent.com/dr-montasir/public/main/native_math/images/solidjs_native_math.gif


NATIVE MATH Object Keys

| Key | Definition | Value | | :---------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ | -------------------------------------------------------------------------------- | | abs | The absolute value of a number | function: abs(num) | | add | Addition | function: add(num1, num2) | | acos | Inverse cosine (in radians) | function: acos(num) | | acos.rad | Inverse cosine (in radians) | function: acos.rad(num) | | acos.deg | Inverse cosine (in degrees) | function: acos.deg(num) | | acosh | Inverse hyperbolic cosine (in radians) | function: acosh(num) | | acosh.rad | Inverse hyperbolic cosine (in radians) | function: acosh.rad(num) | | acosh.deg | Inverse hyperbolic cosine (in degrees) | function: acosh.deg(num) | | acot | Inverse cotangent (in radians) | function: acot(num) | | acot.rad | Inverse cotangent (in radians) | function: acot.rad(num) | | acot.deg | Inverse cotangent (in degrees) | function: acot.deg(num) | | acoth | Inverse hyperbolic cotangent (in radians) | function: acoth(num) | | acoth.rad | Inverse hyperbolic cotangent (in radians) | function: acoth.rad(num) | | acoth.deg | Inverse hyperbolic cotangent (in degrees) | function: acoth.deg(num) | | acsc | Inverse cosecant (in radians) | function: acsc(num) | | acsc.rad | Inverse cosecant (in radians) | function: acsc.rad(num) | | acsc.deg | Inverse cosecant (in degrees) | function: acsc.deg(num) | | acsch | Inverse hyperbolic cosecant (in radians) | function: acsch(num) | | acsch.rad | Inverse hyperbolic cosecant (in radians) | function: acsch.rad(num) | | acsch.deg | Inverse hyperbolic cosecant (in degrees) | function: acsch.deg(num) | | asec | Inverse secant (in radians) | function: asec(num) | | asec.rad | Inverse secant (in radians) | function: asec.rad(num) | | asec.deg | Inverse secant (in degrees) | function: asec.deg(num) | | asech | Inverse hyperbolic secant (in radians) | function: asech(num) | | asech.rad | Inverse hyperbolic secant (in radians) | function: asech.rad(num) | | asech.deg | Inverse hyperbolic secant (in degrees) | function: asech.deg(num) | | asin | Inverse sine (in radians) | function: asin(num) | | asin.rad | Inverse sine (in radians) | function: asin.rad(num) | | asin.deg | Inverse sine (in degrees) | function: asin.deg(num) | | asinh | Inverse hyperbolic sine (in radians) | function: asinh(num) | | asinh.rad | Inverse hyperbolic sine (in radians) | function: asinh.rad(num) | | asinh.deg | Inverse hyperbolic sine (in degrees) | function: asinh.deg(num) | | atan | Inverse tangen (in radians) | function: atan(num) | | atan.rad | Inverse tangen (in radians) | function: atan.rad(num) | | atan.deg | Inverse tangen (in degrees) | function: atan.deg(num) | | atanh | Inverse hyperbolic tangen (in radians) | function: atanh(num) | | atanh.rad | Inverse hyperbolic tangen (in radians) | function: atanh.rad(num) | | atanh.deg | Inverse hyperbolic tangen (in degrees) | function: atanh.deg(num) | | ceil | The ceil function returns the smallest integer greater than or equal to a number | function: ceil(num) | | change | The change function replace x (number or numeric array element) with z if x = y | function: change(x, y, z) | | change.isEqual | The change.isEqual function replace x (number or numeric array element) with z if x = y | function: change.isEqual(x, y, z) | | change.isNotEqual | The change.isNotEqual replace x (number or numeric array element) with z if x is not equal to y | function: change.isNotEqual(x, y, z) | | change.isGreater | The change.isGreater replace x (number or numeric array element) with z if x is greater than y | function: change.isGreater(x, y, z) | | change.isLess | The change.isLess replace x (number or numeric array element) with z if x is less than y | function: change.isLess(x, y, z) | | change.isGreaterOrEqual | The change.isGreaterOrEqual replace x (number or numeric array element) with z if x is greater than or equal to y | function: change.isGreaterOrEqua(x, y, z) | | change.isLessOrEqual | The change.isLess replace x (number or numeric array element) with z if x is less than y | function: change.isLessOrEqual(x, y, z) | | change.isFiniteNum | The change.isFiniteNum replace x (number or numeric array element) with y if x is finite | function: change.isFiniteNum(x,y) | | change.isInfinity | The change.isInfinity replace x (number or numeric array element) with y if x is infinity | function: change.isInfinity(x,y) | | change.isPlusInfinity | The change.isPlusInfinity replace x (number or numeric array element) with y if x is plus infinity | function: change.isPlusInfinity(x,y) | | change.isMinusInfinity | The change.isMinusInfinity replace x (number or numeric array element) with y if x is minus infinity | function: change.isMinusInfinity(x,y) | | change.isNAN | The change.isNAN replace x (number or numeric array element) with y if x is NAN | function: change.isNAN(x,y) | | cos | Cosine (in radians) | function: cos(angleRadians) | | cos.rad | Cosine (in radians) | function: cos.rad(angleRadians) | | cos.deg | Cosine (in degrees) | function: cos.deg(angleDegrees) | | cosh | Hyperbolic cosine (in radians) | function: cosh(angleRadians) | | cosh.rad | Hyperbolic cosine (in radians) | function: cosh.rad(angleRadians) | | cosh.deg | Hyperbolic cosine (in degrees) | function: cosh.deg(angleDegrees) | | csc | cosecant (or cosec) | function: csc(angleRadians) | | csc.rad | cosecant (or cosec) | function: csc.rad(angleRadians) | | csc.deg | Cosecant (in degrees) | function: csc.deg(angleDegrees) | | csch | Hyperbolic cosecant (or cosec) | function: csch(angleRadians) | | csch.rad | Hyperbolic cosecant (or cosec) | function: csch.rad(angleRadians) | | csch.deg | Hyperbolic cosecant (in degrees) | function: csch.deg(angleDegrees) | | cube | Cube (n)^3 | function: cube(num) | | cbrt | Cube Root | function: cbrt(num) | | cot | Cotangent (or cotan or cotg or ctg or ctn). (in radians) | function: cot(angleRadians) | | cot.rad | Cotangent (or cotan or cotg or ctg or ctn). (in radians) | function: cot.rad(angleRadians) | | cot.deg | Cotangent (in degrees) | function: cot.deg(angleDegrees) | | coth | Hyperbolic cotangent (or cotan or cotg or ctg or ctn). (in radians) | function: coth(angleRadians) | | coth.rad | Hyperbolic cotangent (or cotan or cotg or ctg or ctn). (in radians) | function: coth.rad(angleRadians) | | coth.deg | Hyperbolic cotangent (in degrees) | function: coth.deg(angleDegrees) | | dtr | Degrees to Radians conversion | function: dtr(angleDegrees). Result in radians | | divi | Division | function: divi(numerator, denominator) | | e | The Number e (Euler's number) | number: 2.718281828459045 | | exp | The power of e (Euler's number) | function: exp(power) | | expm1 | The expm1 function returns e^x - 1, where x is the argument, and e the base of the natural logarithms | function: expm1(power) | | fermat | The fermat function accepting a non-negative integer | function: fermat(num) | | fix | Fix to the certain decimal point | function: fix(num, point) | | floor | The floor function returns the largest integer less than or equal to a given number | function: floor(num) | | fround | The fround function returns the nearest 32-bit single precision float representation of a Number | function: fround(num) | | hypot | The square root of the sum of squares | function: hypot(num1, num2, ..., num) or function: hypot([num1, num2, ..., num]) | | imul | The imul function returns the result of the C-like 32-bit multiplication of the two parameters | function: imul(num1, num2) | | inv | The inverse of a number | function: inv(num) | | ln2 | The natural logarithm of 2 | number: 0.693147180559945 | | ln10 | The natural logarithm of 10 | number: 2.302585092994046 | | log | The Natural logarithm (base e) of a number | function: log(x) is equivalent to ln(x) in mathematics | | log1p | The natural logarithm (base e) of 1 + a number | function: log1p(x) | | log2 | The base 2 logarithm of a number | function: log2(x) | | log10 | The base 10 logarithm of a number | function: log10(x) | | log2e | The base 2 logarithm of E | number: 1.4426950408889634 | | log10e | The base 10 logarithm of E | number: 0.434294481903252 | | max | Max function returns the largest-valued number | function: max(num1, num2, ..., num) or max(array of numbers) | | min | Min function returns the lowest-valued number | function: min(num1, num2, ..., num) or min(array of numbers) | | monolist | The monolist function returns an array of numbers of equal values, specifying the element's value and the size of the array. | function: monolist(value, size). It returns an array | | mult | Multiplication | function: mult(num1, num2) | | nrt | N Root | function: nrt(num, root), when root=n={1,2,..} | | nts | Number to String conversion | function: nts(num). Result as string | | pi | The Number pi (π) | number: 3.141592653589793 | | phi | The Golden Ratio (Phi) | number: 1.618033988749895 | | pow | power | function: pow(num, power) | | range | The range function returns a sequence of numbers, starting from start value by default, and increments or decrements by step value, and stops before or in specified end value. | function: range(start, end, step). It returns an array | | rem | The remainder function (%) returns the remainder or signed remainder of a division, after one number is divided by another (called the modulus of the operation) | function: rem(num1, num2) | | rib | The rib function returns a random integer between two values, inclusive min and max value | function: rib(min, max) | | round | The round function returns the value of a number rounded to the nearest integer | function: round(num) | | rtd | Radians to Degrees conversion | function: rtd(angleRadians). Result in degrees | | sec | Secant (in radians) | function: sec(angleRadians) | | sec.rad | Secant (in radians) | function: sec.rad(angleRadians) | | sec.deg | Secant (in degrees) | function: sec.deg(angleDegrees) | | sech | Hyperbolic secant (in radians) | function: sech(angleRadians) | | sech.rad | Hyperbolic secant (in radians) | function: sech.rad(angleRadians) | | sech.deg | Hyperbolic secant (in degrees) | function: sech.deg(angleDegrees) | | sign | The sign function (+, -) | function: sign(num). It returns -1, -0, 0, 1 | | sin | Sine (in radians) | function: sin(angleRadians) | | sin.rad | Sine (in radians) | function: sin.rad(angleRadians) | | sin.deg | Sine (in degrees) | function: sin.deg(angleDegrees) | | sinh | Hyperbolic sine (in radians) | function: sinh(angleRadians) | | sinh.rad | Hyperbolic sine (in radians) | function: sinh.rad(angleRadians) | | sinh.deg | Hyperbolic sine (in degrees) | function: sinh.deg(angleDegrees) | | sqr | Square | function: sqr(num) | | sqrt | Square Root | function: sqrt(num) | | stn | String to Number conversion | function: stn(str). Result as number | | subt | Subtraction | function: subt(num1, num2) | | sum | The Sum Function, Also Called The Reducer Function. The final result of running the sum function across all elements of the array is a single value. The first argument should be one (numeric or empty) array and the second should be a number. | function: sum(Array, number) or sum(Array), number=0 | | tan | Tangent (in radians) | function: tan(angleRadians) | | tan.rad | Tangent (in radians) | function: tan.rad(angleRadians) | | tan.deg | Tangen (in degrees) | function: tan.deg(angleDegrees) | | tanh | Hyperbolic tangent (in radians) | function: tanh(angleRadians) | | tanh.rad | Hyperbolic tangent (in radians) | function: tanh.rad(angleRadians) | | tanh.deg | Hyperbolic tangent (in degrees) | function: tanh.deg(angleDegrees) | | tau | The tau constant (2 x pi) | number: 6.283185307179586 | | trunc | Returns the integer part of a number | function: trunc(num) | | zeros | Add .00 to number | function: zeros(num, point). Result as string |