my-cognitive-bot
v1.0.1
Published
A cognitive bot implementation using TensorFlow.js
Downloads
6
Readme
My Cognitive Bot
My Cognitive Bot is an AI-powered chatbot with cognitive capabilities implemented using TensorFlow.js. This bot can learn and respond to user inputs intelligently.
Table of Contents
Installation
To get started with My Cognitive Bot, you need to have Node.js installed on your system. Follow the steps below to set up the project:
Clone the repository:
git clone https://github.com/vrzaq/my-cognitive-bot.git cd my-cognitive-bot
Install dependencies:
npm install
Usage
To start the bot, run the following command:
npm start
The bot will start running and will be ready to interact with.
Project Structure
The project consists of the following files:
index.js
: Entry point of the application.CognitiveBot.js
: Contains the implementation of the CognitiveBot class.
index.js
import CognitiveBot from './CognitiveBot.js';
// Vocabulary size, embedding size, and hidden size
const vocabSize = 5000;
const embeddingSize = 128;
const hiddenSize = 128;
const bot = new CognitiveBot(vocabSize, embeddingSize, hiddenSize);
// Example training data
const inputTexts = ['hello', 'how are you'];
const targetTexts = ['hi', 'I am fine'];
async function trainBot() {
await bot.train(inputTexts, targetTexts);
console.log('Training completed.');
}
trainBot();
async function respondToInput(input) {
const response = await bot.respond(input);
console.log('Bot response:', response);
}
// Example interaction
respondToInput('hello');
CognitiveBot.js
import * as tf from '@tensorflow/tfjs';
class CognitiveBot {
constructor(vocabSize, embeddingSize, hiddenSize) {
this.vocabSize = vocabSize;
this.embeddingSize = embeddingSize;
this.hiddenSize = hiddenSize;
this.embedding = tf.layers.embedding({ inputDim: vocabSize, outputDim: embeddingSize });
this.encoder = tf.layers.lstm({ units: hiddenSize, returnState: true });
this.decoder = tf.layers.lstm({ units: hiddenSize, returnSequences: true, returnState: true });
this.output = tf.layers.dense({ units: vocabSize, activation: 'softmax' });
this.optimizer = tf.train.adam();
this.lossFunction = tf.losses.sparseCategoricalCrossentropy;
this.conversationHistory = [];
}
async encode(inputText) {
const embeddedInput = this.embedding.apply(inputText);
const [, stateH, stateC] = await this.encoder.apply(embeddedInput);
return [stateH, stateC];
}
async decode(stateH, stateC, targetText) {
const embeddedTarget = this.embedding.apply(targetText);
const [decoderOutputs, , ] = await this.decoder.apply(embeddedTarget, { initialState: [stateH, stateC] });
const output = await this.output.apply(decoderOutputs);
return output;
}
async train(inputTexts, targetTexts) {
for (let i = 0; i < inputTexts.length; i++) {
const inputText = inputTexts[i];
const targetText = targetTexts[i];
const gradientFunction = () => {
const [stateH, stateC] = this.encode(inputText);
const output = this.decode(stateH, stateC, targetText);
const loss = this.lossFunction(targetText, output);
return [loss, this.getTrainableWeights()];
};
const grads = await tf.tidy(() => this.optimizer.minimize(gradientFunction));
this.optimizer.applyGradients(grads);
}
}
async respond(inputText) {
const [stateH, stateC] = await this.encode(inputText);
const startToken = tf.tensor2d([this.vocabSize - 1], [1, 1]); // Start token
let outputText = [startToken];
while (true) {
const [output, newStateH, newStateC] = await this.decoder.apply(tf.expand_dims(outputText[outputText.length - 1], 0), { initialState: [stateH, stateC] });
const predictedToken = tf.argMax(output, -1);
outputText.push(predictedToken);
if (predictedToken.dataSync()[0] === this.vocabSize - 2) { // End token
break;
}
[stateH, stateC] = [newStateH, newStateC];
}
this.conversationHistory.push([inputText, outputText]);
return outputText.slice(1, -1).map((token) => this.vocabToText(token.dataSync()[0]));
}
vocabToText(token) {
// Implement this function to convert tokens to text
}
}
export default CognitiveBot;
Training the Model
The train
method of the CognitiveBot
class is used to train the bot with the provided input and target texts. You can modify the inputTexts
and targetTexts
arrays with your training data and call the train
function to start training.
const inputTexts = ['hello', 'how are you'];
const targetTexts = ['hi', 'I am fine'];
async function trainBot() {
await bot.train(inputTexts, targetTexts);
console.log('Training completed.');
}
trainBot();
Author
This project is developed by Arifi Razzaq.
License
This project is licensed under the MIT License.
Let me know if you need any adjustments or additional sections!