muru
v0.0.6
Published
Muru is backend system for MachineLearning.
Downloads
404
Readme
Muru
Muru is a machine learning backend system developed by CarnationStudio.
Usage
Muru is divided into four main components
- muru.lib
- muru.gpu
- muru.runtime
- muru.callback
muru.lib allows you to import and remove libraries related to Muru.
muru.gpu allows you to change the backend devices used by Muru.
muru.runtime allows EasyRun to easily run models.
muru.callback handles problems that occur in Muru and provides information as a CallBack.
Usage of muru.lib
muru.lib has one API.
muru.lib.import(lib)
API
You can import any library that Muru supports.
The lib
part is the name of the library as a String
.
The available libraries are as follows.
- Legend: library name => import name
- Tensorflow.js => tfjs
- GPU.js => gpujs
- ml5.js => ml5.js
- Tensorflow-Model-Quna=> tfjsqna
Example: Import Tensorflow.js library
import muru from 'Path-to-Muru';.
//import muru
muru.lib.import(“tfjs”);
// import Tensorflow.js here
Usage of muru.gpu
muru.gpu has three components.
muru.gpu.change()
API
This API changes the backend device to the GPU.
Example: ``muru.gpu.change()
import muru from 'Path-to-Muru';
//import muru
muru.gpu.change()
// change backend device to GPU.
muru.gpu.cpu()
API
This API changes the backend device to the CPU.
If you change the backend device to CPU, you will get only about 1/100 of the performance when using GPU.
Example:
import muru from 'Path-to-Muru';
//import muru
muru.gpu.cpu();
//set backend device to CPU
muru.gpu.wasm
API
This API changes the backend device to WASM (WebAssembly).
The performance will be dramatically improved compared to CPU.
Example:
import muru from 'Path-to-Muru';
//import muru
muru.gpu.wasm();
//set backend device to wasm
Usage of muru.runtime
muru.runtime has one API.
muru.runtime.model
API
This API allows importing trained models.
Usage:
import muru from 'Path-to-Muru';
//import muru
muru.runtime.model.modelName.init();//init();//initialize model
muru.runtime.model.model name.use(input);//use model
/*Example: Qna model in Tensorflow.js (BERT Q&A model)*/
muru.runtime.model.qna.init();//initialize Qna
let result = muru.runtime.model.qna.use(q,a);//enter question a about q
console.log(result);//display output
muru.runtime.model.onnx
API
This API allows you to run ONNX models.
Usage:
import muru from 'Path-to-Muru';
//import muru
(async () => {
muru.runtime.onnx.init(modelpath);
//initialization ONNX model
let result = await async muru.runtime.onnx.use(Input,Input2)
//If you do not want Input2, enter a space instead of null.
console.log(result);
//Show Results
})();