multi-llm-package
v2.0.0
Published
This package provides interfaces and implementations to interact with Large Language Models (LLMs) such as OpenAI, Claude, and Gemini. It includes tools for generating and streaming text from LLM providers.
Downloads
70
Readme
Multi LLM TS Package
Overview
This package provides interfaces and implementations to interact with Large Language Models (LLMs) such as OpenAI, Claude, and Gemini. It includes tools for generating and streaming text from LLM providers.
Features:
- Easy integration with OpenAI, Claude, and Gemini providers.
- Text generation and streaming support.
- Environment variable management for API keys and configuration.
Installation
Clone the repository:
git clone https://github.com/hemanthgalam/multi-llm-api-ts cd multi-llm-api
Install dependencies:
npm install
Install dotenv for environment variables:
npm install dotenv
Usage
Set up environment variables:
- Create a
.env
file at the root of your project. - Add your API keys and configuration:
OPENAI_API_KEY=your-openai-api-key OPENAI_ENDPOINT=https://api.openai.com/v1/completions OPENAI_MODEL=text-davinci-003 CLAUDE_API_KEY=your-claude-api-key CLAUDE_ENDPOINT=https://claude.example.com/v1/completions CLAUDE_MODEL=claude-2 GEMINI_API_KEY=your-gemini-api-key GEMINI_ENDPOINT=https://gemini.example.com/v1/completions GEMINI_MODEL=gemini-1
- Create a
// 2. Import the providers in your code:
import { OpenAIProvider } from './src/providers/openai';
import { ClaudeProvider } from './src/providers/claude';
import { GeminiProvider } from './src/providers/gemini';
// 2. Configure and use the providers:
## OpenAIProvider Example:
const openAIConfig = {
apiKey: process.env.OPENAI_API_KEY,
endpoint: process.env.OPENAI_ENDPOINT,
model: process.env.OPENAI_MODEL,
};
const openAIProvider = new OpenAIProvider(openAIConfig);
async function getOpenAIResponse() {
const response = await openAIProvider.generateText("What is the capital of France?");
console.log(response.text); // Output: "Paris"
}
async function streamOpenAIResponse() {
const responseStream = openAIProvider.streamText("Generate large content...");
for await (const chunk of responseStream) {
console.log(chunk.text); // Stream large content in chunks
}
}
## ClaudeProvider Example:
const claudeConfig = {
apiKey: process.env.CLAUDE_API_KEY,
endpoint: process.env.CLAUDE_ENDPOINT,
model: process.env.CLAUDE_MODEL,
};
const claudeProvider = new ClaudeProvider(claudeConfig);
async function getClaudeResponse() {
const response = await claudeProvider.generateText("What is the capital of Germany?");
console.log(response.text); // Output: "Berlin"
}
async function streamClaudeResponse() {
const responseStream = claudeProvider.streamText("Generate content in chunks...");
for await (const chunk of responseStream) {
console.log(chunk.text); // Stream large content in chunks
}
}
## GeminiProvider Example:
const geminiConfig = {
apiKey: process.env.GEMINI_API_KEY,
endpoint: process.env.GEMINI_ENDPOINT,
model: process.env.GEMINI_MODEL,
};
const geminiProvider = new GeminiProvider(geminiConfig);
async function getGeminiResponse() {
const response = await geminiProvider.generateText("What is the capital of the United States?");
console.log(response.text); // Output: "New York"
}
async function streamGeminiResponse() {
const responseStream = geminiProvider.streamText("Generate long-form content...");
for await (const chunk of responseStream) {
console.log(chunk.text); // Stream large content in chunks
}
}
// 3. **Log Request and Response Time (Optional)**:
import { logRequestResponseTime } from './logger';
const startTime = Date.now();
// Perform API request
const endTime = Date.now();
logRequestResponseTime(startTime, endTime, "POST", endpoint, requestPayload, responseData);
Contribution
Contributions are welcome! Feel free to fork the repository, make your changes, and submit a pull request.