mu-ffsm
v0.0.2
Published
Fluent functional state machines
Downloads
2
Readme
µ-ffsm: Micro fluent API helper
Very tiny helper function to construct fluent interfaces.
> npm i mu-ffsm
Import
var FFSM = require('mu-ffsm');
Create language/machine.
// internal state is an Array
var Talker = FFSM({
0: function() { return []; }, // TODO allow const
talk: function(say, what) { say.push(what); return say; },
1: function(say, sep) { return say.join(sep || ' '); }
});
Construct sentences/instances:
var cowboyGreeting = Talker()
.talk('howdy')
.talk('cowboy');
// make dramatic
console.log(cowboyGreeting(', ...'));
Idea
We consider a sort of 'state machine' that maintains an internal
state of type S
. We then consider three types of
functions on it:
- entry :
* ⟶ S
- transition :
S ⟶ * ⟶ S
- exit :
S ⟶ * ⟶ *
We write the entry function as 0
, the exit function as 1
and then
name all the transition functions however we like.
Then
var M = FFSM({
0: function(i) { return /* initial state */; } // entry function
a: function(s, t) { return /* new state */; } // transition 'a'
b: function(s, t) { return /* new state */; } // transition 'b'
1: function(s, x) { return /* final value */; } // exit function
});
Now
var i = M(entry) // x : S <- 0(entry)
.a(trigger_0) // y : S <- a(x, trigger_0)
.b(trigger_1) // z : S <- b(y, trigger_1)
.a(trigger_2); // i : S <- a(z, trigger_2)
Finally
var y = i(x); // y <- 1(i, x)
So we have
First
M(entry)
creates a new machine instance of type M. It's initial state derived from entry (0(entry)
).Then
.a(trigger_0
) transitions the machine with transitiona
to a new state, using the previous state and the data fromtrigger_0
to compute the new state.Similarly
.b(t_1)
,.a(t_2)
.Finally, the
i(x)
call constructs an element out of the internal state and the argument using the exit function1(i,x)
.