mse-ts
v1.0.2
Published
Typed mean squared error estimator
Downloads
7
Maintainers
Readme
Installing
$ npm install mse-ts
Importing the package
Using import
import mse from 'mse-ts';
Using require
const mse = require('mse-ts');
Usage
Calculating MSE - Example 1
import mse from 'mse-ts';
const y_true = [3, -0.5, 2, 7];
const y_pred = [2.5, 0.0, 2, 8];
const meanSquaredError = mse(y_true, y_pred);
console.log(meanSquaredError);
output
0.375
Calculating MSE - Example 2
import mse from 'mse-ts';
const y_true = [
188, 100, 114, 171, 171, 173, 230, 149,
191, 81, 61, 62, 127, 217, 62, 81,
178, 159, 245, 18, 9, 86, 201, 166,
122, 210, 4, 182, 15, 18, 135, 203,
222, 134, 154, 21, 71, 217, 48, 153,
113, 234, 207, 119, 51, 61, 149, 222,
186, 38, 158, 79, 185, 1, 118, 222,
22, 137, 110, 206, 94, 120, 163, 241
];
const y_pred = [
188, 100, 114, 171, 171, 173, 230, 149,
191, 81, 61, 62, 123, 217, 62, 81,
178, 159, 245, 18, 9, 86, 201, 166,
122, 210, 4, 200, 15, 18, 135, 203,
222, 134, 154, 21, 71, 217, 48, 153,
113, 234, 207, 119, 51, 61, 149, 222,
186, 38, 158, 79, 185, 1, 118, 222,
22, 137, 110, 206, 94, 120, 163, 241
];
const meanSquaredError = mse(y_true, y_pred);
if (meanSquaredError <> 0) {
console.log('data sets are different by ' + meanSquaredError);
}
output
'data sets are different by 5.3125'
Steps
You may provide a custom step value
import mse from 'mse-ts';
const y_true = [3, -0.5, 2, 7];
const y_pred = [2.5, 0.0, 2, 8];
const meanSquaredError = mse(y_true, y_pred, { step: 2 });
console.log(meanSquaredError);
output
0.0625
Caveats
- The length of
y_true
should always be higher than or equal toy_pred
. Non-compliance will result in anyPred at index i is undefined
error - Passing in empty arrays will return
NaN
More info
Find out more about the applications of MSE over on Wikipedia: https://en.wikipedia.org/wiki/Mean_squared_error
license
MIT