mpzjs
v0.7.1
Published
Arbitrary-precision integer arithmetic using libgmp
Downloads
35
Maintainers
Readme
mpzjs 0.7.1
Arbitrary precision integral arithmetic for node.js. Based on node-bigint
This library wraps around libgmp's integer functions to perform infinite-precision arithmetic. It can be used with worker threads.
mpzjs is several times faster than BigInt.
Install
You'll need the libgmp to work this package. Under Debian-based systems,
sudo apt-get install libgmp-dev
On a Mac with Homebrew,
brew install gmp
And then install with npm:
npm install mpzjs
Example
simple.js
const MPZ = require('mpzjs');
const n = MPZ('782910138827292261791972728324982');
MPZ.sub(n, n, '182373273283402171237474774728373');
MPZ.div(n, n, 8);
console.log(n);
const b = MPZ('782910138827292261791972728324982')
.sub('182373273283402171237474774728373')
.div(8);
console.log(b);
$ node simple.js
<MPZ 75067108192986261319312244199576>
<MPZ 75067108192986261319312244199576>
perfect.js
Generate the perfect numbers:
// If 2**n-1 is prime, then (2**n-1) * 2**(n-1) is perfect.
const MPZ = require('mpzjs');
for (let n = 0; n < 100; n++) {
const p = MPZ(2).pow(n).sub(1);
if (p.probPrime(50)) {
const perfect = p.mul(MPZ(2).pow(n - 1));
console.log(perfect.toString());
}
}
6
28
496
8128
33550336
8589869056
137438691328
2305843008139952128
2658455991569831744654692615953842176
191561942608236107294793378084303638130997321548169216
Limitations
It doesn't work in Windows now.
API
There are two sets of methods
Instance methods that create new MPZ
.
const num = value.method(operand);
for example
const value = MPZ(7);
const result = value.mul(6);
And static methods that save the result to the specified variable.
MPZ.method(result, value, operand);
for example
const result = MPZ();
MPZ.mul(result, 7, 6);
Static methods are noticeably faster.
MPZ(num, base=10)
Create a new MPZ
from num
and a base. num
can be a string, number, BigInt, empty or another MPZ
.
If you pass in a string you can set the base that string is encoded in.
value.toString(base=10)
Print out the MPZ
instance in the requested base as a string.
value.toNumber()
Turn a MPZ
into a Number
. If the MPZ
is too big you'll lose precision or you'll get ±Infinity
.
value.toBigInt(), value.toJSON()
Convert MPZ
to the specified format
value.valueOf()
Convert MPZ
to BigInt
MPZ.fromBuffer(buf, opts)
Create a new MPZ
from a Buffer
.
The default options are:
{
order : 'forward', // low-to-high indexed word ordering
endian : 'big',
size : 1, // number of bytes in each word
}
Note that endian doesn't matter when size = 1.
value.toBuffer(opts)
Return a new Buffer
with the data from the MPZ
.
The default options are:
{
order : 'forward', // low-to-high indexed word ordering
endian : 'big',
size : 1, // number of bytes in each word
}
Note that endian doesn't matter when size = 1.
value.set(num), MPZ.set(value, num)
Assigns num
to value
.
result = value.add(num), MPZ.add(result, value, num)
Set result
to value
plus num
.
result = value.sub(num), MPZ.sub(result, value, num)
Set result
to value
minus num
.
result = value.mul(num), MPZ.mul(result, value, num)
Set result
to value
multiplied by num
.
result = value.div(num), MPZ.div(result, value, num)
Set result
to value
integrally divided by num
.
result = value.mod(num), MPZ.mod(result, value, num)
Set result
to value
modulo num
.
MPZ.addMul(result, value1, value2)
Set result
to result
plus value1
times value2
.
MPZ.subMul(result, value1, value2)
Set result
to result
minus value1
times value2
.
result = value.and(num), MPZ.and(result, value, num)
Set result
to value
bitwise AND (&)-ed with num
.
result = value.or(num), MPZ.or(result, value, num)
Set result
to value
bitwise inclusive-OR (|)-ed with num
.
result = value.xor(num), MPZ.xor(result, value, num)
Set result
to value
bitwise exclusive-OR (^)-ed with num
.
result = value.not(), MPZ.not(result, value)
Set result
to value
bitwise NOT (~)ed.
result = value.shiftLeft(num), MPZ.shiftLeft(result, value, num)
Set result
to value
multiplied by 2^num
. Equivalent of the <<
operator.
result = value.shiftRight(num), MPZ.shiftRight(result, value, num)
Set result
to value
integrally divided by 2^num
. Equivalent of the >>
operator.
result = value.abs(), MPZ.abs(result, value)
Set result
to the absolute value of value
.
result = value.neg(), MPZ.neg(result, value)
Set result
to the negative of value
.
result = value.sqrt(), MPZ.sqrt(result, value)
Set result
to square root of value
. This truncates.
result = value.root(nth), MPZ.root(result, value, nth)
Set result
to nth
root of value
. This truncates.
result = value.pow(exp), MPZ.pow(result, value, exp)
Set result
to value
raised to the exp
power.
result = value.powm(exp, mod), MPZ.powm(result, value, exp, mod)
Set result
to value
raised to the exp
power modulo mod
.
value.cmp(num)
Compare the instance value to num
. Return a positive integer if > num
,
a negative integer if < num
, and 0 if === num
.
value.gt(num)
Return a boolean: whether the instance value is greater than num (> num
).
value.ge(num)
Return a boolean: whether the instance value is greater than or equal to num (>= num
).
value.eq(num)
Return a boolean: whether the instance value is equal to num (== num
).
value.lt(num)
Return a boolean: whether the instance value is less than num (< num
).
value.le(num)
Return a boolean: whether the instance value is less than or equal to num (<= num
).
result = value.rand(upperBound), MPZ.rand(result, lowerBound, upperBound), MPZ.rand(result, upperBound)
If upperBound
is supplied, set result
to a random MPZ
between the value
(lowerBound
)
and upperBound - 1
, inclusive.
Otherwise, set result
to a random MPZ
between 0 and the value
- 1, inclusive.
value.probPrime()
Return whether the value
is:
- certainly prime (true)
- probably prime ('maybe')
- certainly composite (false)
using mpz_probab_prime.
result = value.nextPrime(), MPZ.nextPrime(result, value)
Set result
to the next prime greater than value
using
mpz_nextprime.
result = value.invert(mod), MPZ.invert(result, value, mod)
Compute the multiplicative inverse modulo mod
.
result = value.gcd(num), MPZ.gcd(result, value, num)
Set result
to the greatest common divisor of the value
with num
.
value.bitLength()
Return the number of bits used to represent the current MPZ
as a javascript Number.
License
MIT or LGPL-3 license.