mongolike
v0.1.3
Published
MongoDB Clone on top of Postgres
Downloads
11
Maintainers
Readme
Mongolike
Mongolike is an experimental MongoDB clone being built on top of PLV8 and Postgres.
Implemented (so far)
- create_collection()
- drop_collection()
- save()
- find()
- runCommand() (Map/Reduce)
- ensureIndex()
- removeIndex()
- getIndexes()
Installing
Install PLV8
Visit http://code.google.com/p/plv8js/wiki/PLV8 and follow the build instructions.
Install Mongolike
The Easy Way
The easy way to install is to use node.js
.
$ npm install -g mongolike
$ mongolike-install -d yourdb
The Slight Less Easy Way
$ psql yourdb <sql/*.sql
Running Tests
Mongolike includes a test suite and a test runner.
$ test/test_runner.js -d yourdb
Additional tests can be added to test/tests.sql
.
Using
All commands must be prefixed by SELECT
, and are modified slightly to work in the Postgres environment.
create_collection(collection)
Create a collection.
Example:
SELECT create_collection('test');
drop_collection(collection)
Drop a collection.
Example:
SELECT drop_collection('test');
save(collection, object)
Save an object into a collection.
Example:
SELECT save('test', '{ "foo": "bar" }');
find(collection /*, terms, limit, skip */)
Find an object, with optional terms
, limit
, and skip
.
Example:
SELECT find('test', '{ "type": { "$in": [ "food", "snacks" ] } }');
runCommand(command)
Run a command on the Database. Currently only mapReduce
is supported.
NOTE The JSON object cannot have carriage returns, the example below does for readability.
Example:
SELECT runCommand('{
"map": "function MapCode() {
emit(this.Country, {
\"data\": [
{
\"city\": this.City,
\"lat\": this.Latitude,
\"lon\": this.Longitude
}
]
});
}",
"reduce": "function ReduceCode(key, values) {
var reduced = {
\"data\": [ ]
};
for (var i in values) {
var inter = values[i];
for (var j in inter.data) {
reduced.data.push(inter.data[j]);
}
}
return reduced;
}",
"mapreduce": "cities",
"finalize": "function Finalize(key, reduced) {
if (reduced.data.length == 1) {
return {
\"message\" : \"This Country contains only 1 City\"
};
}
var min_dist = 999999999999;
var city1 = { \"name\": \"\" };
var city2 = { \"name\": \"\" };
var c1;
var c2;
var d;
for (var i in reduced.data) {
for (var j in reduced.data) {
if (i >= j) continue;
c1 = reduced.data[i];
c2 = reduced.data[j];
d = Math.sqrt((c1.lat-c2.lat)*(c1.lat-c2.lat)+(c1.lon-c2.lon)*(c1.lon-c2.lon));
if (d < min_dist && d > 0) {
min_dist = d;
city1 = c1;
city2 = c2;
}
}
}
return {
\"city1\": city1.city,
\"city2\": city2.city,
\"dist\": min_dist
};
}" }');
ensureIndex(collection, terms /*, type */)
Creates a new index on a collection.
Example:
SELECT ensureIndex('test', '{ "foo", "bar" }', '{ "unique": true }');
removeIndex(collection, name)
Removes an index from a collection by name.
Example:
SELECT removeIndex('test', 'idx_col_woo_foo');
removeIndex(collection, terms)
Removes an index from a collection by terms.
NOTE in order to remove an index with terms
you MUST cast the query due to how Postgres handles JSON.
Example:
SELECT removeIndex('test', '{ "foo", "bar" }'::json);
getIndexes(collection)
Retrieves all indexes for a given collection.
Example:
SELECT getIndexes('test');
Importing the Data
I have included a modest amount of data for testing and benchmarking, both for Postgres and for MongoDB (1,706,873 rows).
Importing into Postgres:
$ psql yourdb < data/cities.sql
This will create the collection and save()
all of the data.
Importing into MongoDB
$ mongoimport --collection cities --type csv --headerline --file data/cities.csv --db yourdb
Follow along at http://legitimatesounding.com/blog/