mlflow
v2.0.7
Published
MLflow api client for Node.js
Downloads
3,826
Readme
mlflow
MLflow api client for Node.js
Install
npm install mlflow
Usage
const MLflow = require('mlflow')
const {ViewType, RunState, LifecysleStage} = require('mlflow/enum')
const client = new MLflow({endpoint: 'http://localhost:5000'})
const {Experiments, Runs, Metrics, Artifacts} = client
;(async () => {
// Get list of all experiments
const {experiments} = await Experiments.list()
const experiment = experiments[0]
// Get list of all active runs in specific experiment
const {runs} = await Runs.search({
experiment_ids: [experiment.experiment_id],
run_view_type: ViewType.ACTIVE_ONLY
})
const {info, data} = runs[0]
const {run_id} = info
// Get metric history
const auc_history = await Metrics.getHistory({run_id, metric_key: 'auc_score'})
console.log(auc_history)
})()
API
MLflow
Constructor
endpoint:string (required)
- MLflow server's endpoint url
- ex.) 'http://localhost:5000'
heders:object (option)
- Key-Value pairs of RequestHeaders which will be passed for fetch method.
- ex.) {Authorization: 'Bearer abcdefgh'}
Props
Experiments
- create()
- restore()
- get()
- list()
- update()
- delete()
- setExperimentTag()
Runs
- create()
- restore()
- get()
- search()
- update()
- delete()
- logMetric()
- logParam()
- setTag()
- deleteTag()
- logBatch()
Metrics
- getHistory()
Artifacts
- list()
For more details about each method's args, also see MLflow REST API Official Docs.
API's are basically implemented just as they are.