npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

ml-distance

v4.0.1

Published

Distance and similarity functions to compare vectors

Downloads

1,136,226

Readme

ml-distance

NPM version build status npm download

Distance functions to compare vectors.

Installation

$ npm i ml-distance

Methods

Distances

  • euclidean(p, q)

Returns the euclidean distance between vectors p and q

$d(p,q)=\sqrt{\sum\limits_{i=1}^{n}(p_i-q_i)^2}$

  • manhattan(p, q)

Returns the city block distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\left|p_i-q_i\right|}$

  • minkowski(p, q, d)

Returns the Minkowski distance between vectors p and q for order d

  • chebyshev(p, q)

Returns the Chebyshev distance between vectors p and q

$d(p,q)=\max\limits_i(|p_i-q_i|)$

  • sorensen(p, q)

Returns the Sørensen distance between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{\left|p_i-q_i\right|}}{\sum\limits_{i=1}^{n}{p_i+q_i}}$

  • gower(p, q)

Returns the Gower distance between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{\left|p_i-q_i\right|}}{n}$

  • soergel(p, q)

Returns the Soergel distance between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{\left|p_i-q_i\right|}}{max(p_i,q_i)}$

  • kulczynski(p, q)

Returns the Kulczynski distance between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{\left|p_i-q_i\right|}}{min(p_i,q_i)}$

  • canberra(p, q)

Returns the Canberra distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}\frac{\left|{p_i-q_i}\right|}{p_i+q_i}$

  • lorentzian(p, q)

Returns the Lorentzian distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}\ln(\left|{p_i-q_i}\right|+1)$

  • intersection(p, q)

Returns the Intersection distance between vectors p and q

$d(p,q)=1-\sum\limits_{i=1}^{n}min(p_i,q_i)$

  • waveHedges(p, q)

Returns the Wave Hedges distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}\left(1-\frac{min(p_i,q_i)}{max(p_i,q_i)}\right)$

  • czekanowski(p, q)

Returns the Czekanowski distance between vectors p and q

$d(p,q)=1-\frac{2\sum\limits_{i=1}^{n}{min(p_i,q_i)}}{\sum\limits_{i=1}^{n}{p_i+q_i}}$

  • motyka(p, q)

Returns the Motyka distance between vectors p and q

$d(p,q)=1-\frac{\sum\limits_{i=1}^{n}{min(p_i,q_i)}}{\sum\limits_{i=1}^{n}{p_i+q_i}}$

Note: distance between 2 identical vectors is 0.5 !

  • ruzicka(p, q)

Returns the Ruzicka similarity between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{max(p_i,q_i)}}{\sum\limits_{i=1}^{n}{min(p_i,q_i)}}$

  • tanimoto(p, q, [bitVector])

Returns the Tanimoto distance between vectors p and q, and accepts the bitVector use, see the test case for an example

  • innerProduct(p, q)

Returns the Inner Product similarity between vectors p and q

$s(p,q)=\sum\limits_{i=1}^{n}{p_i\cdot{q_i}}$

  • harmonicMean(p, q)

Returns the Harmonic mean similarity between vectors p and q

$d(p,q)=2\sum\limits_{i=1}^{n}\frac{p_i\cdot{q_i}}{p_i+q_i}$

  • cosine(p, q)

Returns the Cosine similarity between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{p_i\cdot{q_i}}}{\sum\limits_{i=1}^{n}{p_i^2}\sum\limits_{i=1}^{n}{q_i^2}}$

  • kumarHassebrook(p, q)

Returns the Kumar-Hassebrook similarity between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{p_i\cdot{q_i}}}{\sum\limits_{i=1}^{n}{p_i^2}+\sum\limits_{i=1}^{n}{q_i^2}-\sum\limits_{i=1}^{n}{p_i\cdot{q_i}}}$

  • jaccard(p, q)

Returns the Jaccard distance between vectors p and q

$d(p,q)=1-\frac{\sum\limits_{i=1}^{n}{p_i\cdot{q_i}}}{\sum\limits_{i=1}^{n}{p_i^2}+\sum\limits_{i=1}^{n}{q_i^2}-\sum\limits_{i=1}^{n}{p_i\cdot{q_i}}}$

  • dice(p,q)

Returns the Dice distance between vectors p and q

$d(p,q)=1-\frac{\sum\limits_{i=1}^{n}{(p_i-q_i)^2}}{\sum\limits_{i=1}^{n}{p_i^2}+\sum\limits_{i=1}^{n}{q_i^2}}$

  • fidelity(p, q)

Returns the Fidelity similarity between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\sqrt{p_i\cdot{q_i}}}$

  • bhattacharyya(p, q)

Returns the Bhattacharyya distance between vectors p and q

$d(p,q)=-\ln\left(\sum\limits_{i=1}^{n}{\sqrt{p_i\cdot{q_i}}}\right)$

  • hellinger(p, q)

Returns the Hellinger distance between vectors p and q

$d(p,q)=2\cdot\sqrt{1-\sum\limits_{i=1}^{n}{\sqrt{p_i\cdot{q_i}}}}$

  • matusita(p, q)

Returns the Matusita distance between vectors p and q

$d(p,q)=\sqrt{2-2\cdot\sum\limits_{i=1}^{n}{\sqrt{p_i\cdot{q_i}}}}$

  • squaredChord(p, q)

Returns the Squared-chord distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{(\sqrt{p_i}-\sqrt{q_i})^2}$

  • squaredEuclidean(p, q)

Returns the squared euclidean distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{(p_i-q_i)^2}$

  • pearson(p, q)

Returns the Pearson distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\frac{(p_i-q_i)^2}{q_i}}$

  • neyman(p, q)

Returns the Neyman distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\frac{(p_i-q_i)^2}{p_i}}$

  • squared(p, q)

Returns the Squared distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\frac{(p_i-q_i)^2}{p_i+q_i}}$

  • probabilisticSymmetric(p, q)

Returns the Probabilistic Symmetric distance between vectors p and q

$d(p,q)=2\cdot\sum\limits_{i=1}^{n}{\frac{(p_i-q_i)^2}{p_i+q_i}}$

  • divergence(p, q)

Returns the Divergence distance between vectors p and q

$d(p,q)=2\cdot\sum\limits_{i=1}^{n}{\frac{(p_i-q_i)^2}{(p_i+q_i)^2}}$

  • clark(p, q)

Returns the Clark distance between vectors p and q

$d(p,q)=\sqrt{\sum\limits_{i=1}^{n}{\left(\frac{\left|p_i-q_i\right|}{(p_i+q_i)}\right)^2}}$

  • additiveSymmetric(p, q)

Returns the Additive Symmetric distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\frac{(p_i-q_i)^2\cdot(p_i+q_i)}{p_i\cdot{q_i}}}$

  • kullbackLeibler(p, q)

Returns the Kullback-Leibler distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{p_i\cdot\ln\frac{p_i}{q_i}}$

  • jeffreys(p, q)

Returns the Jeffreys distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\left((p_i-q_i)\ln\frac{p_i}{q_i}\right)}$

  • kdivergence(p, q)

Returns the K divergence distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\left(p_i\cdot\ln\frac{2p_i}{p_i+q_i}\right)}$

  • topsoe(p, q)

Returns the Topsøe distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\left(p_i\cdot\ln\frac{2p_i}{p_i+q_i}+q_i\cdot\ln\frac{2q_i}{p_i+q_i}\right)}$

  • jensenShannon(p, q)

Returns the Jensen-Shannon distance between vectors p and q

$d(p,q)=\frac{1}{2}\left[\sum\limits_{i=1}^{n}{p_i\cdot\ln\frac{2p_i}{p_i+q_i}}+\sum\limits_{i=1}^{n}{q_i\cdot\ln\frac{2q_i}{p_i+q_i}}\right]$

  • jensenDifference(p, q)

Returns the Jensen difference distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\left[\frac{p_i\ln{p_i}+q_i\ln{q_i}}{2}-\left(\frac{p_i+q_i}{2}\right)\ln\left(\frac{p_i+q_i}{2}\right)\right]}$

  • taneja(p, q)

Returns the Taneja distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\left[\frac{p_i+q_i}{2}\ln\left(\frac{p_i+q_i}{2\sqrt{p_i\cdot{q_i}}}\right)\right]}$

  • kumarJohnson(p, q)

Returns the Kumar-Johnson distance between vectors p and q

$d(p,q)=\sum\limits_{i=1}^{n}{\frac{\left(p_i^2-q_i^2\right)^2}{2(p_i\cdot{q_i})^{3/2}}}$

  • avg(p, q)

Returns the average of city block and Chebyshev distances between vectors p and q

$d(p,q)=\frac{\sum\limits_{i=1}^{n}{\left|p_i-q_i\right|}+\max\limits_i(|p_i-q_i|)}{2}$

Similarities

  • intersection(p, q)

Returns the Intersection similarity between vectors p and q

  • czekanowski(p, q)

Returns the Czekanowski similarity between vectors p and q

  • motyka(p, q)

Returns the Motyka similarity between vectors p and q

  • kulczynski(p, q)

Returns the Kulczynski similarity between vectors p and q

  • squaredChord(p, q)

Returns the Squared-chord similarity between vectors p and q

  • jaccard(p, q)

Returns the Jaccard similarity between vectors p and q

  • dice(p, q)

Returns the Dice similarity between vectors p and q

  • tanimoto(p, q, [bitVector])

Returns the Tanimoto similarity between vectors p and q, and accepts the bitVector use, see the test case for an example

  • tree(a,b, from, to, [options])

Refer to ml-tree-similarity

Contributing

A new metric should normally be in its own file in the src/dist directory. There should be a corresponding test file in test/dist.
The metric should be then added in the exports of src/index.js with a relatively small but understandable name (use camelCase).
It should also be added to this README with either a link to the formula or an inline description.

Authors

License

MIT