npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

ml-bayes

v1.0.5

Published

Naive Bayes Document Classification Algorithm

Downloads

12

Readme

ml-bayes

The Naive Bayesian classifier is based on Bayes’ theorem with independence assumptions between predictors. A Naive Bayesian model is easy to build, with no complicated iterative parameter estimation which makes it particularly useful for very large datasets. Despite its simplicity, the Naive Bayesian classifier often does surprisingly well and is widely used because it often outperforms more sophisticated classification methods.

Install

npm install --save ml-bayes

Usage in node.js

var Bayes = require('ml-bayes'),
    langBayes = new Bayes();

langBayes.train("In machine learning, naive Bayes classifiers are a family of simple probabilistic classifiers based on applying Bayes theorem with strong (naive) independence assumptions between the features. Naive Bayes has been studied extensively since the 1950s. It was introduced under a different name into the text retrieval community in the early 1960s,[1]:488 and remains a popular (baseline) method for text categorization, the problem of judging documents as belonging to one category or the other (such as spam or legitimate, sports or politics, etc.) with word frequencies as the features. With appropriate preprocessing, it is competitive in this domain with more advanced methods including support vector machines.[2] It also finds application in automatic medical diagnosis.[3]", 'English');

langBayes.train("Ein Bayes-Klassifikator (Aussprache: [beɪz], benannt nach dem englischen Mathematiker Thomas Bayes), ist ein aus dem Satz von Bayes hergeleiteter Klassifikator. Er ordnet jedes Objekt der Klasse zu, zu der es mit der größten Wahrscheinlichkeit gehört, oder bei der durch die Einordnung die wenigsten Kosten entstehen. Genau genommen handelt es sich um eine mathematische Funktion, die jedem Punkt eines Merkmalsraums eine Klasse zuordnet.", 'German');

langBayes.train("Naiwny klasyfikator bayesowski – prosty klasyfikator probabilistyczny. Naiwne klasyfikatory bayesowskie są oparte na założeniu o wzajemnej niezależności predyktorów (zmiennych niezależnych). Często nie mają one żadnego związku z rzeczywistością i właśnie z tego powodu nazywa się je naiwnymi. Bardziej opisowe jest określenie – „model cech niezależnych”. Ponadto model prawdopodobieństwa można wyprowadzić korzystając z twierdzenia Bayesa.", 'Polish');

var scores = langBayes.guess('Pomimo ich naiwnego projektowania i bardzo uproszczonych założeń, w wielu rzeczywistych sytuacjach naiwne klasyfikatory Bayesa często pracują dużo lepiej, niż można było tego oczekiwać.');
var winner = langBayes.extractWinner(scores);
console.log(winner);
// Object {label: "Polish", score: 0.9999981183271176}

API

new Bayes([options])

var Bayes = require('ml-bayes');
var bayes = new Bayes();
var bayes2 = new Bayes({
    log: function() { console.log.apply(console, arguments); },
    tokenize: function(text) { return text.split(' '); }
});