micro-rsa-dsa-dh
v0.1.0
Published
Minimal implementation of older cryptography algorithms: RSA, DSA, DH
Downloads
59
Maintainers
Readme
micro-rsa-dsa-dh
Minimal implementation of older cryptography algorithms: RSA, DSA, DH.
- 🔻 Tree-shakeable: unused code is excluded from your builds
- 🔑 RSA (Rivest-Shamir-Adleman) public-key cryptosystem, with OAEP, PSS, PKCS1
- ✍️ DSA (Digital Signature Algorithm) signatures
- 🤝 DH (Diffie-Hellman) key exchange
- 📦 ElGamal encryption
- 5️⃣ Primality tests
[!WARNING] Like in all JS implementations, keep in mind timing leaks
Usage
npm install micro-rsa-dsa-dh
We support all major platforms and runtimes.
All imports
import { DH, DHGroups } from 'micro-rsa-dsa-dh/dh.js';
import { DSA } from 'micro-rsa-dsa-dh/dsa.js';
import { ElGamal, genElGamalParams } from 'micro-rsa-dsa-dh/elgamal.js';
import {
millerRabin,
jacobi,
lucas,
bailliePSW,
isProbablePrime,
isProbablePrimeRSA,
isProbablySafePrime,
IFCPrimes,
} from 'micro-rsa-dsa-dh/primality.js';
import {
keygen,
mgf1,
OAEP,
PSS,
PKCS1_KEM,
PKCS1_SHA1,
PKCS1_SHA224,
PKCS1_SHA256,
PKCS1_SHA384,
PKCS1_SHA512,
PKCS1_SHA512_224,
PKCS1_SHA512_256,
PKCS1_SHA3_224,
PKCS1_SHA3_256,
PKCS1_SHA3_384,
PKCS1_SHA3_512,
} from 'micro-rsa-dsa-dh/rsa.js';
RSA
RSA is most common example of integer factorization cryptography (IFC).
KEM version of RSA (encrypt/decrypt) is slow and usually used to exchange AES/ChaCha keys.
OAEP
OAEP is Optimal Asymmetric Encryption Padding.
Use if you need KEM (encrypt/decrypt).
import * as rsa from 'micro-rsa-dsa-dh/rsa.js';
const alice = rsa.keygen(2048);
const oaep = rsa.OAEP(sha256, rsa.mgf1(sha256));
const msg = new Uint8Array([1, 2, 3]);
const encrypted = oaep.encrypt(alice.publicKey, msg);
deepStrictEqual(oaep.decrypt(alice.privateKey, encrypted), msg);
PSS
Use if you need signatures (sign/verify).
import * as rsa from 'micro-rsa-dsa-dh/rsa.js';
const alice = rsa.keygen(2048);
const pss = rsa.PSS(sha256, rsa.mgf1(sha256));
const msg = new Uint8Array([1, 2, 3]);
const sig = pss.sign(alice.privateKey, msg);
deepStrictEqual(pss.verify(alice.publicKey, msg, sig), true);
PKCS1
This is old standard, OAEP/PSS is better.
Signatures:
import * as rsa from 'micro-rsa-dsa-dh/rsa.js';
const alice = rsa.keygen(2048);
const pkcs = rsa.PKCS1_SHA256;
const msg = new Uint8Array([1, 2, 3]);
const sig = pkcs.sign(alice.privateKey, msg);
deepStrictEqual(pkcs.verify(alice.publicKey, msg, sig), true);
import * as rsa from 'micro-rsa-dsa-dh/rsa.js';
const alice = rsa.keygen(2048);
const pkcs = rsa.PKCS1_KEM;
const msg = new Uint8Array([1, 2, 3]);
const encrypted = pkcs.encrypt(alice.publicKey, msg);
deepStrictEqual(pkcs.decrypt(alice.privateKey, encrypted), msg);
DH
Same as ECDH, seems safe if pre-defined groups are used. Cons:
- Long keys
- Harder to protect from timing attacks
- Using custom non-standard groups can make algorithm weak
import { DH, DHGroups } from 'micro-rsa-dsa-dh/dh.js';
const dh = DH('modp18');
const alicePriv = dh.randomPrivateKey();
const alicePub = dh.getPublicKey(alicePriv);
const bobPriv = dh.randomPrivateKey();
const bobPub = dh.getPublicKey(bobPriv);
deepStrictEqual(
dh.getSharedSecret(alicePriv, bobPub),
dh.getSharedSecret(bobPriv, alicePub)
);
DSA
[!NOTE] DSA was deprecated in FIPS186-5.
Same as ECDSA, but with big numbers. Cons:
- Deprecated
- No pre-defined groups: need to generate and send params
- Long keys
- Harder to protect from timing attacks
import * as dsa from 'micro-rsa-dsa-dh/dsa.js';
// 1. Params
// Carol generates random params
const carolParams = dsa.genDSAParams(2048, 256, sha256, 1);
// Instead of sending primes to Alice and Bob (which can be insecure), she sends seed
// This ensures that params are not constructed primes, but generated randomly:
// Alice and Bob can use these params without trusting Carol.
const seed = carolParams.domainParameterSeed;
const aliceParams = dsa.genDSAParams(2048, 256, sha256, 1, seed);
deepStrictEqual(aliceParams, carolParams); // Same params as Carol!
const bobParams = dsa.genDSAParams(2048, 256, sha256, 1, seed);
deepStrictEqual(aliceParams, bobParams); // Now Bob has same params too!
// 2. Keys
const aliceDSA = dsa.DSA(aliceParams);
const alicePrivKey = aliceDSA.randomPrivateKey();
const alicePubKey = aliceDSA.getPublicKey(alicePrivKey); // Alice generates public key and sends to Bob
const msg = new Uint8Array([1, 2, 3, 4, 5]);
const sig = aliceDSA.sign(alicePrivKey, msg); // Alice signs message
const bobDSA = dsa.DSA(bobParams);
// Now Bob can verify that message was sent by Alice (and not Carol for example).
deepStrictEqual(bobDSA.verify(alicePubKey, msg, sig), true);
ElGamal
Mostly for educational purpose: almost nobody uses it.
import { ElGamal, genElGamalParams } from 'micro-rsa-dsa-dh/elgamal.js';
// NOTE: this is super slow! 512: 1s, 1024: 20s, 2048: 1046s
const params = genElGamalParams(512);
const elgamal = ElGamal(params);
const alicePriv = elgamal.randomPrivateKey();
const alicePub = elgamal.getPublicKey(alicePriv);
// Encryption
const msg = 12345n; // bigint, because there is not spec for padding/hashing
const cipherText = elgamal.encrypt(alicePub, msg); // Somebody encrypts message using Alice public key
deepStrictEqual(elgamal.decrypt(alicePriv, cipherText), msg); // Alice can decrypt message using private key
// Sign
const sig = elgamal.sign(alicePriv, msg); // Alice sings message using private key
deepStrictEqual(elgamal.verify(alicePub, msg, sig), true); // Other parties can verify it using Alice public key
Primality tests
A bunch of primality tests.
import * as primality from 'micro-rsa-dsa-dh/primality.js';
deepStrictEqual(primality.millerRabin(7n, 10), true);
deepStrictEqual(primality.lucas(7n), true);
deepStrictEqual(primality.bailliePSW(7n), true);
deepStrictEqual(primality.isProbablePrime(7n, 30), true); // Tests 30 random bases
deepStrictEqual(primality.isProbablySafePrime(7n, 10), true);
| | Reliable | Deterministic | Note | |---------------------|----------|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------| | millerRabin | No | No | Non-deterministic Miller-Rabin test over random bases (multiple iterations). | | lucas | No | Yes | Deterministic Lucas test. Generally slower than the Miller-Rabin test but can be more reliable for certain numbers. | | bailliePSW | Yes | Yes | Deterministic test which consists of Miller-Rabin with base 2 and Lucas test. Suitable for critical applications where the highest reliability is required. | | isProbablePrime | Yes | No | Non-deterministic test from FIPS186-5. This is an enhanced version of the Baillie-PSW test, incorporating multiple rounds of the Miller-Rabin test with random bases | | isProbablySafePrime | Yes | No | Non-deterministic safe prime test. Slow. Tests if a number is a probable safe prime. A safe prime is a prime number of the form p = 2q + 1, where both p and q are prime. |
- Reliable: no false positives are known
- Deterministic: it does not rely on randomness
Security
All algorithms use JS bigints, which are not constant-time. When timing attacks could be mounted, they will reveal sensitive information.
That generally means:
- Document, mail, messaging encryption, like PGP, is probably OK. It's hard for an attacker to measure timings: they don't know how long it took to create a msg
- Public APIs are NOT safe. Consider something like "send us document and we will auto-sign it". These cases can leak private keys
For comparison, bigint-based elliptic curve implementations will leak much less info. That's because they operate over much smaller numbers: think 2^256, instead of 2^2048.
Links
- https://datatracker.ietf.org/doc/html/rfc3447 - old RSA
- https://datatracker.ietf.org/doc/html/rfc8017 - OAEP/PSS/PKCS1
- https://datatracker.ietf.org/doc/html/rfc8702 - RSA-PSS + Shake
- https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf - Prime generation
- https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf - DSA
- https://datatracker.ietf.org/doc/html/rfc2631 - DH
- https://datatracker.ietf.org/doc/html/rfc3526 - DH groups
- https://datatracker.ietf.org/doc/html/rfc6979 - DSA
License
MIT (c) Paul Miller (https://paulmillr.com), see LICENSE file.