npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

matrixsoup

v1.0.5

Published

Matrix operations- add, subtract, multiply, inverse, determinant, adjoint.

Downloads

14

Readme

Installation

$ npm install matrixsoup

Matrix constructor

##Usage

var Matrix = require('matrixsoup');
var _2DMatrix = new Matrix(2,2);
console.log(_2DMatrix);

This will create a 2x2 matrix object which would appear as:

{ 
	val: [ [ 1, 0 ], [ 0, 1 ] ],
	determinant: 1,
	adjoint: [ [ 1, 0 ], [ 0, 1 ] ],
	inverse: [ [ 1, 0 ], [ 0, 1 ] ],
	valString: '\n\t|\t1\t0\t|\n\t|\t0\t1\t|',			//these will be explained soon
	adjointString: '\n\t|\t1\t0\t|\n\t|\t0\t1\t|',
	inverseString: '\n\t|\t1\t0\t|\n\t|\t0\t1\t|'
}
  1. First argument for number of rows of the new matrix.
  2. Second argument for number of columns of the new matrix.
  3. Third argument [is optional]: can be set as true or false.
    • [false] for creating null matrix.
    • [not false](example: "banana", "potato", "crispy", "", "$#*t!~"), creates an identity matrix.
  4. Properties :
    • val : The matrix bound to the Matrix object instance.
    • determinant : The magnitude of the Matrix.
    • adjoint : The matrix formed by taking transpose of cofactor-matrix of the original matrix.
    • inverse : if [A][B] = [I], where [A] and [B] are matrices of same order, then [B] is inverse of [A]. This property holds true only for square matrices having |A| != 0. For non-square matrix, say A, the property is set as [NaN] also for |A| = 0 matrices.
  5. String representations : -valString -adjointString -inverseString

Methods

##1. Matrix.set([array], rows, cols): isChainable: True

  1. First argument is a 1-D array to be converted to a matrix.
  2. Second argument for number of rows of the new matrix.
  3. Third argument for number of coloumns of the new matrix.

This method will update the determinant, adjoint, inverse and string properties each time it is called.

console.log(_2DMatrix.set([1,2,3,4],2,2));

gives output:-

{ val: [ [ 1, 2 ], [ 3, 4 ] ],
  determinant: -2,
  adjoint: [ [ 4, 2 ], [ -3, -1 ] ],
  inverse: [ [ -2, -1 ], [ 1.5, 0.5 ] ],
  valString: '\n\t|\t1\t2\t|\n\t|\t3\t4\t|',
  adjointString: '\n\t|\t4\t2\t|\n\t|\t-3\t-1\t|',
  inverseString: '\n\t|\t-2\t-1\t|\n\t|\t1.5\t0.5\t|' }

To understand the string properties, consider the following.

console.log(_2DMatrix.valString);
console.log(_2DMatrix.adjointString);
console.log(_2DMatrix.inverseString);
        |       1       2       | //valString
        |       3       4       |

        |       4       2       | //adjointString
        |       -3      -1      |

        |       -2      -1      | //inverseString
        |       1.5     0.5     |

##2. Matrix.transpose(): isChainable: True

Transposes an NxM matrix: the resultant matrix appears as if rotated 90° anti-clockwise. The transpose method also updates the adjoint, inverse and the string representations.

console.log(_3DMatrix.set([1,2,3,4,4,6,5,3,2],3,3));
console.log(_3DMatrix.transpose());
{ val: [ [ 1, 2, 3 ], [ 4, 4, 6 ], [ 5, 3, 2 ] ],									//Notice this...
  determinant: 10,
  adjoint: [ [ -10, 5, 0 ], [ 22, -13, 6 ], [ -8, 7, -4 ] ],						//and this...
  inverse: [ [ -1, 0.5, 0 ], [ 2.2, -1.3, 0.6 ], [ -0.8, 0.7, -0.4 ] ],				//this as well...
  valString: '\n\t|\t1\t2\t3\t|\n\t|\t4\t4\t6\t|\n\t|\t5\t3\t2\t|',
  adjointString: '\n\t|\t-10\t5\t0\t|\n\t|\t22\t-13\t6\t|\n\t|\t-8\t7\t-4\t|',
  inverseString: '\n\t|\t-1\t0.5\t0\t|\n\t|\t2.2\t-1.3\t0.6\t|\n\t|\t-0.8\t0.7\t-0.4\t|' }

{ val: [ [ 1, 4, 5 ], [ 2, 4, 3 ], [ 3, 6, 2 ] ],											//the value transposed
  determinant: 10,																			//determinant stays the same
  adjoint: [ [ -10, 22, -8 ], [ 5, -13, 7 ], [ 0, 6, -4 ] ],								//adjoing is transposed
  inverse: [ [ -1, 2.2, -0.8 ], [ 0.5, -1.3, 0.7 ], [ 0, 0.6, -0.4 ] ],						//and so is the inverse!
  valString: '\n\t|\t1\t4\t5\t|\n\t|\t2\t4\t3\t|\n\t|\t3\t6\t2\t|',
  adjointString: '\n\t|\t-10\t22\t-8\t|\n\t|\t5\t-13\t7\t|\n\t|\t0\t6\t-4\t|',				//this has impacted the
  inverseString: '\n\t|\t-1\t2.2\t-0.8\t|\n\t|\t0.5\t-1.3\t0.7\t|\n\t|\t0\t0.6\t-0.4\t|'	//string representations
}  																		//Cool! right?

##3. Matrix.add([A],([B],...)): @isChainable: true

The add method allows variable number of matrices to be sent as arguments to be added with the matrix. This updates the determinant, adjoint, inverse and string representations.

var _3DMatrix1 = [
					[-1, -2, -1],
					[-1, 0,  -2],
					[-2, -3,  0]
];
var _3DMatrix2 = [
					[1, 0, 2],
					[4, 3, 3],
					[2, -3,4]
];
var _3DMatrix = new Matrix(2,2,true);	
_3DMatrix.set([1,2,3,4,4,6,5,3,2],3,3);
console.log(_3DMatrix.add(_3DMatrix1, _3DMatrix2));

The output

{ val: [ [ 1, 0, 4 ], [ 7, 7, 7 ], [ 5, -3, 6 ] ],
  determinant: -161,
  adjoint: [ [ 63, -12, -28 ], [ -7, -14, 21 ], [ -56, 3, 7 ] ],
  inverse:
   [ [ -0.391, 0.075, 0.174 ],
     [ 0.043, 0.087, -0.13 ],
     [ 0.348, -0.019, -0.043 ] ],
  valString: '\n\t|\t1\t0\t4\t|\n\t|\t7\t7\t7\t|\n\t|\t5\t-3\t6\t|',
  adjointString: '\n\t|\t63\t-12\t-28\t|\n\t|\t-7\t-14\t21\t|\n\t|\t-56\t3\t7\t|',
  inverseString: '\n\t|\t-0.391\t0.075\t0.174\t|\n\t|\t0.043\t0.087\t-0.13\t|\n\t|\t0.348\t-0.019\t-0.043\t|' }

##4. Matrix.sub([A],([B],...)): @isChainable: true

The sub method allows variable number of matrices to be sent as arguments to be subtracted from the matrix. This updates the determinant, adjoint, inverse and string representations.

_3DMatrix.set([1,2,3,4,4,6,5,3,2],3,3);
console.log(_3DMatrix.sub(_3DMatrix1, _3DMatrix2));

Gives output:

{ val: [ [ 1, 4, 2 ], [ 1, 1, 5 ], [ 5, 9, -2 ] ],
  determinant: 69,
  adjoint: [ [ -47, 26, 18 ], [ 27, -12, -3 ], [ 4, 11, -3 ] ],
  inverse:
   [ [ -0.681, 0.377, 0.261 ],
     [ 0.391, -0.174, -0.043 ],
     [ 0.058, 0.159, -0.043 ] ],
  valString: '\n\t|\t1\t4\t2\t|\n\t|\t1\t1\t5\t|\n\t|\t5\t9\t-2\t|',
  adjointString: '\n\t|\t-47\t26\t18\t|\n\t|\t27\t-12\t-3\t|\n\t|\t4\t11\t-3\t|',
  inverseString: '\n\t|\t-0.681\t0.377\t0.261\t|\n\t|\t0.391\t-0.174\t-0.043\t|\n\t|\t0.058\t0.159\t-0.043\t|' 
}

##5. Matrix.multiply([A],([B],...)): @isChainable: true

The multiply method allows variable number of matrices to be sent as arguments to be multiplied to the matrix. This updates the determinant, adjoint, inverse and string representations.

_3DMatrix.set([1,2,3,4,4,6,5,3,2],3,3);
console.log(_3DMatrix.multiply(_3DMatrix1, _3DMatrix2));

Gives output:

{ val: [ [ -61, -18, -69 ], [ -144, -38, -163 ], [ -96, -18, -111 ] ],
  determinant: 588,
  adjoint: [ [ 1284, -756, 312 ], [ -336, 147, -7 ], [ -1056, 630, -274 ] ],
  inverse:
   [ [ 2.184, -1.286, 0.531 ],
     [ -0.571, 0.25, -0.012 ],
     [ -1.796, 1.071, -0.466 ] ],
  valString: '\n\t|\t-61\t-18\t-69\t|\n\t|\t-144\t-38\t-163\t|\n\t|\t-96\t-18\t-111\t|',
  adjointString: '\n\t|\t1284\t-756\t312\t|\n\t|\t-336\t147\t-7\t|\n\t|\t-1056\t630\t-274\t|',
  inverseString: '\n\t|\t2.184\t-1.286\t0.531\t|\n\t|\t-0.571\t0.25\t-0.012\t|\n\t|\t-1.796\t1.071\t-0.466\t|' }

##6. Matrix.scale(A,(B,...)): @isChainable: true

The scale method allows variable number of numbers to be sent as arguments to be multiplied to the matrix as scalars. All the arguments get multiplied first and then get multiplied to the matrix. This updates the determinant, adjoint, inverse and string representations.

_3DMatrix.set([1,2,3,4,4,6,5,3,2],3,3);
console.log(_3DMatrix.scale(2,5));

Gives output:

{ val: [ [ 10, 20, 30 ], [ 40, 40, 60 ], [ 50, 30, 20 ] ],
  determinant: 10000,
  adjoint: [ [ -1000, 500, 0 ], [ 2200, -1300, 600 ], [ -800, 700, -400 ] ],
  inverse:
   [ [ -0.1, 0.05, 0 ],
     [ 0.22, -0.13, 0.06 ],
     [ -0.08, 0.07, -0.04 ] ],
  valString: '\n\t|\t10\t20\t30\t|\n\t|\t40\t40\t60\t|\n\t|\t50\t30\t20\t|',
  adjointString: '\n\t|\t-1000\t500\t0\t|\n\t|\t2200\t-1300\t600\t|\n\t|\t-800\t700\t-400\t|',
  inverseString: '\n\t|\t-0.1\t0.05\t0\t|\n\t|\t0.22\t-0.13\t0.06\t|\n\t|\t-0.08\t0.07\t-0.04\t|' }

##7. Matrix.isEqual([A]): @isChainable: false

The isEqual method checks if the passed argument matrix is equal to the matrix object's val matrix property. Returns true if equal.

var _3DMatrix1 = [
					[-1, -2, -1],
					[-1, 0,  -2],
					[-2, -3,  0]
];
var _3DMatrix = new Matrix(2,2,true);	
_3DMatrix.set([1,2,3,4,4,6,5,3,2],3,3);
console.log(_3DMatrix.isEqual(_3DMatrix1));
false

##8. Matrix.trace(): @isChainable: true

This method will return true if the val property of the matrix object is a symmetric matrix.

##9. Matrix.isSymmetric(): @isChainable: false

This method will return true if the val property of the matrix object is a symmetric matrix.

##10. Matrix.isHermitian(): @isChainable: false

This method will return true if the val property of the matrix object is a hermitian matrix.

Easter Eggs

##1. Matrix.det(): @isChainable: true

This method is called implicitly by the Matrix.set(), Matrix.transpose(), Matrix.add(), Matrix.sub(), Matrix.multiply(), Matrix.scale(). This can be used to obtain the determinant of a matrix if other bound properties are not required.

var _3DMatrix = new Matrix(2,2,true);	
_3DMatrix.set([1,2,3,4,5,5,6,2,1],3,3);
var determinant = _3DMatrix.det().determinant;
console.log(determinant);
	-19

Not very useful though!

##2. Matrix.adj(): @isChainable: true

This method is called implicitly by the Matrix.set(), Matrix.transpose(), Matrix.add(), Matrix.sub(), Matrix.multiply(), Matrix.scale(). This can be used to obtain the adjoint of a matrix if other bound properties are not required.

##3. Matrix.adj(): @isChainable: true

This method is called implicitly by the Matrix.set(), Matrix.transpose(), Matrix.add(), Matrix.sub(), Matrix.multiply(), Matrix.scale(). This can be used to obtain the inverse of a matrix if other bound properties are not required.