npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2025 – Pkg Stats / Ryan Hefner

math.interval-utils

v0.3.0

Published

operations with intervals of real numbers

Downloads

1,013

Readme

math.interval-utils

travis ci npm version Coverage Status Dependency Status

This library provides a data structure and functions to do operations with intervals.

Version

0.3.0

Install

npm install math.inteval-utils --save

Index

Interval

Data structure and valid values

Real interval can be represented with an pair of real numbers and two flags to indicate if these numbers are included or not in interval. This library defines the Interval type as the set of arrays of two objects with value and limit number properties:

[
    {
        value: (Number)
        limit: (0|1)
    },
    {
        value: (Number)
        limit: (-1|0)
    }
]

value properties correspond to the values of interval and limit properties correspond to if values of interval are included or not.

  • If limit is 0, it indicates that value is included.
  • If the limit of first item is 1 , it indicates that first value is not included in interval.
  • If the limit of second item is -1, it indicates that second value is not included in interval.

For example:

  • (1, 5] is represented with:
[
    {
        value: 1
        limit: 1
    },
    {
        value: 5
        limit: 0
    }
]
  • [-1, 3] is represented with:
[
    {
        value: -1
        limit: 0
    },
    {
        value: 3
        limit: 0
    }
]
  • (10, 12) is represented with:
[
    {
        value: 10
        limit: 1
    },
    {
        value: 12
        limit: -1
    }
]

Empty interval

An interval is empty in these cases:

  • value of first element is greater than value of second element.
  • value of first and second elements are equal but limit of first element is greater than limit of second element.

Functions

areDisjoint :: (Interval, Interval) -> Boolean

Given two interval inputs, it returns true or false depending on intervals are disjoint or not, respectively.

Example:

const { areDisjoint } = require('math.interval-utils')

// [1, 3)
const interval1 = [
    {value: 1, limit: 0},
    {value: 3, limit: -1}
]

// (1, 2)
const interval2 = [
    {value: 1, limit: 1},
    {value: 2, limit: -1}
]

// {1}
const interval3 = [
    {value: 1, limit: 0},
    {value: 1, limit: 0}
]

areDisjoint(interval1, interval2) // false
areDisjoint(interval2, interval3) // true

areEqual :: (Interval, Interval) -> Boolean

Given two interval inputs, it returns true or false depending on intervals are equal or not, respectively.

Example:

const { areEqual } = require('math.interval-utils')

// [1, 3)
const interval1 = [
    {value: 1, limit: 0},
    {value: 3, limit: -1}
]

// [1, 3)
const interval2 = [
    {value: 1, limit: 0},
    {value: 3, limit: -1}
]

// [1, 3]
const interval3 = [
    {value: 1, limit: 0},
    {value: 3, limit: 0}
]

areEqual(interval1, interval2) // true
areEqual(interval2, interval3) // false

contains :: (Interval, Interval) -> Boolean

Given two interval inputs, it returns true or false if first interval contains the second interval or not, respectively.

Example:

const { contains } = require('math.interval-utils')

// [1, 3)
const interval1 = [
    {value: 1, limit: 0},
    {value: 3, limit: -1}
]

// (1, 2)
const interval2 = [
    {value: 1, limit: 1},
    {value: 2, limit: -1}
]

contains(interval1, interval2) // true
contains(interval2, interval1) // false

intersection :: (Interval, Interval) -> Interval

Given two interval inputs, it returns the intersection of these intervals.

Example:

const { intersection } = require('math.interval-utils')
const I = {}
// [1, 3)
I['[1, 3)'] = [
    {value: 1, limit: 0},
    {value: 3, limit: -1}
]

// (1, 2)
I['(1, 2)'] = [
    {value: 1, limit: 1},
    {value: 2, limit: -1}
]

// (3, 4)
I['(3, 4)'] = [
    {value: 3, limit: 1},
    {value: 4, limit: -1}
]

intersection(I['[1, 3)'], I['(1, 2)']) // (1, 2)
intersection(I['(1, 2)'], I['(3, 4)']) // (3, 4)
intersection(I['[1, 3)'], I['(3, 4)']) // empty

isEmpty :: Interval -> Boolean

Given an interval, it returns true or false if interval is empty or not, respectively.

Example:

const { isEmpty } = require('math.interval-utils')

// [2, -2]
const interval1 = [
    {value: 2, limit: 0},
    {value: -2, limit: 0}
]

// (1, 1]
const interval2 = [
    {value: 1, limit: 1},
    {value: 1, limit: 0}
]

// [1, 1]
const interval3 = [
    {value: 1, limit: 0},
    {value: 1, limit: 0}
]

isEmpty(interval1) // true
isEmpty(interval2) // true
isEmpty(interval3) // false

isInterval :: Interval -> Boolean

It returns true or false if interval is an Interval.

Example:

const { isInterval } = require('math.interval-utils')

const interval1 = [
    {value: 2, limit: 0},
    {value: -2, limit: 0}
]

const interval2 = [
    {value: -2, limit: 0}
]

const interval3 = [
    {value: 2, limit: 0},
    {value: Infinity, limit: -1}
]

isInterval(interval1) // true
isInterval(interval2) // false
isInterval(interval3) // true

multiIntersection :: ([Interval], [Interval]) -> [Interval]

Given two lists of disjoint sorted intervals, it returns a new list of disjoint sorted intervals that represent the intersection of these sets.

Example:

// (1, 3) U {4} U [5, 6)
const listIntervals1 = [[
  {value: 1, limit: 1},
  {value: 3, limit: -1}
], [
  {value: 4, limit: 0},
  {value: 4, limit: 0}
], [
  {value: 5, limit: 0},
  {value: 6, limit: -1}
]]

// {0} U [1, 2] U (3, 4] U (5, 7)
const listIntervals2 = [[
  {value: 0, limit: 0},
  {value: 0, limit: 0}
], [
  {value: 3, limit: 1},
  {value: 4, limit: 0}
], [
  {value: 5, limit: 1},
  {value: 7, limit: -1}
]]

// returns (1, 2] U {4} U (5, 6)
multiIntersection(listIntervals1, listIntervals2) // [[
  {value: 1, limit: 1},
  {value: 2, limit: 0}
], [
  {value: 4, limit: 0},
  {value: 4, limit: 0}
], [
  {value: 5, limit: 1},
  {value: 6, limit: -1}
]]

This method has better perfomance than recolecting the intersections of each interval of each lists and intersecting one by one.

numToInterval :: Number -> Interval

Given a number input, it returns an singleton interval that contains this number.

Example:

const { numToInterval } = require('math.interval-utils')

// returns {5} or [5, 5]
numToInterval(5) /* returns [
    {value: 5, limit: 0},
    {value: 5, limit: 0}
]*/

parser :: string -> Either Interval String

Given a string that represents an interval, it returns an Either.Right value that saves an interval. If the string does not represent an interval it returns and Either.Left value that saves an error.

Example:

const { Right, Left } = require('data.either')
const { parser } = require('math.interval-utils')

parser('(2, 3]') /* Right [
    {value: 2, limit: 1},
    {value: 3, limit: 0}
] */

parser('{5}') /* Right([
    {value: 5, limit: 0},
    {value: 5, limit: 0}
]) */

parser('(2, 5(') // Left('"(2, 5(" does not match to interval expression')

relativeComplement :: (Interval, Interval) -> [Interval]

Given two interval inputs, it returns a list of intevals that represents the relative complement. It means, the set of numbers that belongs to the first interval but not the second.

Example:

const { relativeComplement } = require('math.interval-utils')
const I = {}
// [1, 5)
I['[1, 5)'] = [
    {value: 1, limit: 0},
    {value: 5, limit: -1}
]

// (2, 3)
I['(2, 3)'] = [
    {value: 2, limit: 1},
    {value: 3, limit: -1}
]

// [4, 6]
I['[4, 6]'] = [
    {value: 4, limit: 0},
    {value: 6, limit: 0}
]

// returns [1, 2] U [3, 5)
relativeComplement(I['[1, 5)'], I['(2, 3)']) /* [[
  {value: 1, limit: 0},
  {value: 2, limit: 0}
], [
  {value: 3, limit: 0},
  {value: 5, limit: -1}
]] */

// returns [1, 4)
relativeComplement(I['[1, 5)'], I['[4, 6]']) /* [[
  {value: 1, limit: 0},
  {value: 4, limit: -1}
]] */

// returns (2, 3)
relativeComplement(I['(2, 3)'], I['[4, 6]']) /* [[
    {value: 2, limit: 1},
    {value: 3, limit: -1}
]] */

// returns empty array relativeComplement(I['(2, 3)'], I['[1, 5)']) // []

union :: [Interval] -> [Interval]

Given an array of intervals, it returns an array of sorted disjoint intervals that represents the union of these intervals.

Example:

const { union } = require('math.interval-utils').union
const I = {}
// [1, 3)
I['[1, 3)'] = [
    {value: 1, limit: 0},
    {value: 3, limit: -1}
]

// (2, 4)
I['(2, 4)'] = [
    {value: 2, limit: 1},
    {value: 4, limit: -1}
]

// [5, 5]
I['[5, 5]'] = [
    {value: 5, limit: 0},
    {value: 5, limit: 0}
]

// (5, 6)
I['(5, 6)'] = [
    {value: 5, limit: 1},
    {value: 6, limit: -1}
]

// returns [1, 4) U [5, 6)
union([interval1, interval2 interval3, interval4]) /* [[
    {value: 1, limit: 0},
    {value: 4, limit: -1}
], [
    {value: 5, limit: 0},
    {value: 6, limit: -1}
]] */

LICENSE

MIT