npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

manee

v0.2.5

Published

a Thai / English text classification using ML lib

Downloads

7

Readme

Manee : Thai / English General-purpose text classification tool

An easy-to-use and simple text classification in Node.js based on TNThai and ml. The analyzer support Thai and English text. From text to vector, one-hot encoding technique is used. See Basic-Usage for more details.

Briefly, one-hot encoding represents a word in the text by a vector of the size of the vocabulary, where only the entry corresponding to the word is a one and all the other entries are zero.

Feature

  • Training using Freetext string support Thai / English
  • a Label must be string representing a category.
  • Only support Multinomial Naive Bayes

Installation

npm install manee 

or

npm install manee --save

Basic usage

const manee = require('manee');

var textClassifier = new manee()

Texts = ["FedEx Parcel Support: Delivery Problem, 1st Attempt Hello  We've tried"
        ,"Package Delivery Notification Dear Customer,  Please review your parcel delivery label"
        ,"Improve trustmail SERP Position Very powerful SERP Booster Plan"
        ,"re: G Analytics traffic for trustmail hi Che%ap Social and Search traffic i%n Google Analyt*ics"
        ,"Delivery problem, parcel USPS Your item has arrived at the Post Office at  Mon, 03 Apr 2017 12:36:51 -0700"
        ,"สมัครงานตำแหน่ง IT Support Web เรียน ฝ่ายบุคคล กระผมมีความสนใจที่จะสมัครงานในตำแหน่ง สมัครงานในตำแหน่ง"
        ,"สมัครงานตำแหน่ง Production Supervisor (พระนครศรีอยุธยา) เรียนผู้จัดการฝ่ายบุคคล บริษัท "
        ,"Application (Planning) T. Maenumkhu A.Pluakdaeng Rayong 21140 April 12  2017 Personal Manager"
        ,"สมัครงานตำแหน่ง  ผู้จัดการแผนกบุคคล เรียน ผู้จัดการฝ่ายทรัพยากรบุคคล เนื่องจากดิฉันนางสาว มีความสนใจร่วม"
        ,"ส่งเอกสารสมัครงาน เรียน ฝ่ายบุคคล กระผมมีความประสงค์ที่จะสมัครงานในตำแหน่ง \" เจ้าหน้าที่ RD; \""]

Labels = ["Spam", "Spam", "Spam", "Spam", "Spam", "Good", "Good", "Good", "Good", "Unknown"]

textClassifier.train(Texts, Labels)

textClassifier.classify(Texts)
//["Spam", "Spam", "Spam", "Spam", "Spam", "Good", "Good", "Good", "Good", "Unknown"]

textClassifier.evaluate()
/* Training Set has : 10 Samples
Correct Label :    Spam,Spam,Spam,Spam,Spam,Good,Good,Good,Good,Unknown
Classified Label : Spam,Spam,Spam,Spam,Spam,Good,Good,Good,Good,Unknown
Whole set evaluation : 100% */

textClassifier.save('test.model')

newTextClassifier = new manee()

newTextClassifier.load('test.model')

newTextClassifier.classify(Texts)
//["Spam", "Spam", "Spam", "Spam", "Spam", "Good", "Good", "Good", "Good", "Unknown"]

To-Do List

  1. generalize ml interface so that many more ML models are supported
  2. implement cross validation evaluation
  3. filter high entropy word
  4. add word embedding technique reference

License

MIT