npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

machine_learning

v0.1.1

Published

Machine learning library for Node.js. You can also use this library in browser.

Downloads

146

Readme

machine_learning

Machine learning library for node.js. You can also use this library in browser.

Demo in Browser!

API Documentation

Installation

Node.js

$ npm install machine_learning

To use this library in browser, include machine_learning.min.js file.

<script src="/js/machine_learning.min.js"></script>

Demo in Browser!

Here is the API Documentation. (Still in progress)

Features

  • Logistic Regression
  • MLP (Multi-Layer Perceptron)
  • SVM (Support Vector Machine)
  • KNN (K-nearest neighbors)
  • K-means clustering
  • 3 Optimization Algorithms (Hill-Climbing, Simulated Annealing, Genetic Algorithm)
  • Decision Tree
  • NMF (non-negative matrix factorization)

Implementation Details

SVM is using Sequential Minimal Optimization (SMO) for its training algorithm.

For Decision Tree, Classification And Regression Tree (CART) was used for its building algorithm.

Usage

Logistic Regression

var ml = require('machine_learning');
var x = [[1,1,1,0,0,0],
         [1,0,1,0,0,0],
         [1,1,1,0,0,0],
         [0,0,1,1,1,0],
         [0,0,1,1,0,0],
         [0,0,1,1,1,0]];
var y = [[1, 0],
         [1, 0],
         [1, 0],
         [0, 1],
         [0, 1],
         [0, 1]];

var classifier = new ml.LogisticRegression({
    'input' : x,
    'label' : y,
    'n_in' : 6,
    'n_out' : 2
});

classifier.set('log level',1);

var training_epochs = 800, lr = 0.01;

classifier.train({
    'lr' : lr,
    'epochs' : training_epochs
});

x = [[1, 1, 0, 0, 0, 0],
     [0, 0, 0, 1, 1, 0],
     [1, 1, 1, 1, 1, 0]];

console.log("Result : ",classifier.predict(x));

MLP (Multi-Layer Perceptron)

var ml = require('machine_learning');
var x = [[0.4, 0.5, 0.5, 0.,  0.,  0.],
         [0.5, 0.3,  0.5, 0.,  0.,  0.],
         [0.4, 0.5, 0.5, 0.,  0.,  0.],
         [0.,  0.,  0.5, 0.3, 0.5, 0.],
         [0.,  0.,  0.5, 0.4, 0.5, 0.],
         [0.,  0.,  0.5, 0.5, 0.5, 0.]];
var y = [[1, 0],
         [1, 0],
         [1, 0],
         [0, 1],
         [0, 1],
         [0, 1]];

var mlp = new ml.MLP({
    'input' : x,
    'label' : y,
    'n_ins' : 6,
    'n_outs' : 2,
    'hidden_layer_sizes' : [4,4,5]
});

mlp.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.

mlp.train({
    'lr' : 0.6,
    'epochs' : 20000
});

a = [[0.5, 0.5, 0., 0., 0., 0.],
     [0., 0., 0., 0.5, 0.5, 0.],
     [0.5, 0.5, 0.5, 0.5, 0.5, 0.]];

console.log(mlp.predict(a));

SVM (Support Vector Machine)

var ml = require('machine_learning');
var x = [[0.4, 0.5, 0.5, 0.,  0.,  0.],
         [0.5, 0.3,  0.5, 0.,  0.,  0.01],
         [0.4, 0.8, 0.5, 0.,  0.1,  0.2],
         [1.4, 0.5, 0.5, 0.,  0.,  0.],
         [1.5, 0.3,  0.5, 0.,  0.,  0.],
         [0., 0.9, 1.5, 0.,  0.,  0.],
         [0., 0.7, 1.5, 0.,  0.,  0.],
         [0.5, 0.1,  0.9, 0.,  -1.8,  0.],
         [0.8, 0.8, 0.5, 0.,  0.,  0.],
         [0.,  0.9,  0.5, 0.3, 0.5, 0.2],
         [0.,  0.,  0.5, 0.4, 0.5, 0.],
         [0.,  0.,  0.5, 0.5, 0.5, 0.],
         [0.3, 0.6, 0.7, 1.7,  1.3, -0.7],
         [0.,  0.,  0.5, 0.3, 0.5, 0.2],
         [0.,  0.,  0.5, 0.4, 0.5, 0.1],
         [0.,  0.,  0.5, 0.5, 0.5, 0.01],
         [0.2, 0.01, 0.5, 0.,  0.,  0.9],
         [0.,  0.,  0.5, 0.3, 0.5, -2.3],
         [0.,  0.,  0.5, 0.4, 0.5, 4],
         [0.,  0.,  0.5, 0.5, 0.5, -2]];

var y =  [-1,-1,-1,-1,-1,-1,-1,-1,-1,-1,1,1,1,1,1,1,1,1,1,1];

var svm = new ml.SVM({
    x : x,
    y : y
});

svm.train({
    C : 1.1, // default : 1.0. C in SVM.
    tol : 1e-5, // default : 1e-4. Higher tolerance --> Higher precision
    max_passes : 20, // default : 20. Higher max_passes --> Higher precision
    alpha_tol : 1e-5, // default : 1e-5. Higher alpha_tolerance --> Higher precision

    kernel : { type: "polynomial", c: 1, d: 5}
    // default : {type : "gaussian", sigma : 1.0}
    // {type : "gaussian", sigma : 0.5}
    // {type : "linear"} // x*y
    // {type : "polynomial", c : 1, d : 8} // (x*y + c)^d
    // Or you can use your own kernel.
    // kernel : function(vecx,vecy) { return dot(vecx,vecy);}
});

console.log("Predict : ",svm.predict([1.3,  1.7,  0.5, 0.5, 1.5, 0.4]));

KNN (K-nearest neighbors)

var ml = require('machine_learning');

var data = [[1,0,1,0,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,0,1,1,1,0,1,0,0,0,1,0],
            [1,0,1,1,1,1,1,1,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,1],
            [0,0,1,0,0,1,0,0,1,0,1,1,1,0],
            [0,0,0,0,0,0,1,1,1,0,1,1,1,0],
            [0,0,0,0,0,1,1,1,0,1,0,1,1,0],
            [0,0,1,0,1,0,1,1,1,1,0,1,1,1],
            [0,0,0,0,0,0,1,1,1,1,1,1,1,1],
            [1,0,1,0,0,1,1,1,1,1,0,0,1,0]
           ];

var result = [23,12,23,23,45,70,123,73,146,158,64];

var knn = new ml.KNN({
    data : data,
    result : result
});

var y = knn.predict({
    x : [0,0,0,0,0,0,0,1,1,1,1,1,1,1],
    k : 3,

    weightf : {type : 'gaussian', sigma : 10.0},
    // default : {type : 'gaussian', sigma : 10.0}
    // {type : 'none'}. weight == 1
    // Or you can use your own weight f
    // weightf : function(distance) {return 1./distance}

    distance : {type : 'euclidean'}
    // default : {type : 'euclidean'}
    // {type : 'pearson'}
    // Or you can use your own distance function
    // distance : function(vecx, vecy) {return Math.abs(dot(vecx,vecy));}
});

console.log(y);

K-means clustering

var ml = require('machine_learning');

var data = [[1,0,1,0,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,0],
            [1,1,1,0,1,1,1,0,1,0,0,0,1,0],
            [1,0,1,1,1,1,1,1,0,0,0,0,1,0],
            [1,1,1,1,1,1,1,0,0,0,0,0,1,1],
            [0,0,1,0,0,1,0,0,1,0,1,1,1,0],
            [0,0,0,0,0,0,1,1,1,0,1,1,1,0],
            [0,0,0,0,0,1,1,1,0,1,0,1,1,0],
            [0,0,1,0,1,0,1,1,1,1,0,1,1,1],
            [0,0,0,0,0,0,1,1,1,1,1,1,1,1],
            [1,0,1,0,0,1,1,1,1,1,0,0,1,0]
           ];

var result = ml.kmeans.cluster({
    data : data,
    k : 4,
    epochs: 100,

    distance : {type : "pearson"}
    // default : {type : 'euclidean'}
    // {type : 'pearson'}
    // Or you can use your own distance function
    // distance : function(vecx, vecy) {return Math.abs(dot(vecx,vecy));}
});

console.log("clusters : ", result.clusters);
console.log("means : ", result.means);

Hill-Climbing

var ml = require('machine_learning');

var costf = function(vec) {
    var cost = 0;
    for(var i =0; i<14;i++) { // 15-dimensional vector
        cost += (0.5*i*vec[i]*Math.exp(-vec[i]+vec[i+1])/vec[i+1])
    }
    cost += (3.*vec[14]/vec[0]);
    return cost;
};

var domain = [];
for(var i=0;i<15;i++)
    domain.push([1,70]); // domain[idx][0] : minimum of vec[idx], domain[idx][1] : maximum of vec[idx].

var vec = ml.optimize.hillclimb({
    domain : domain,
    costf : costf
});

console.log("vec : ",vec);
console.log("cost : ",costf(vec));

Simulated Annealing

var ml = require('machine_learning');

var costf = function(vec) {
    var cost = 0;
    for(var i =0; i<14;i++) { // 15-dimensional vector
        cost += (0.5*i*vec[i]*Math.exp(-vec[i]+vec[i+1])/vec[i+1])
    }
    cost += (3.*vec[14]/vec[0]);
    return cost;
};

var domain = [];
for(var i=0;i<15;i++)
    domain.push([1,70]); // domain[idx][0] : minimum of vec[idx], domain[idx][1] : maximum of vec[idx].

var vec = ml.optimize.anneal({
    domain : domain,
    costf : costf,
    temperature : 100000.0,
    cool : 0.999,
    step : 4
});

console.log("vec : ",vec);
console.log("cost : ",costf(vec));

Genetic Algorithm

var ml = require('machine_learning');

var costf = function(vec) {
    var cost = 0;
    for(var i =0; i<14;i++) { // 15-dimensional vector
        cost += (0.5*i*vec[i]*Math.exp(-vec[i]+vec[i+1])/vec[i+1])
    }
    cost += (3.*vec[14]/vec[0]);
    return cost;
};

var domain = [];
for(var i=0;i<15;i++)
    domain.push([1,70]); // domain[idx][0] : minimum of vec[idx], domain[idx][1] : maximum of vec[idx].

var vec = ml.optimize.genetic({
    domain : domain,
    costf : costf,
    population : 50,
    elite : 2, // elitism. number of elite chromosomes.
    epochs : 300,
    q : 0.3 // Rank-Based Fitness Assignment. fitness = q * (1-q)^(rank-1)
            // higher q --> higher selection pressure
});

console.log("vec : ",vec);
console.log("cost : ",costf(vec));

Decision Tree

// Reference : 'Programming Collective Intellignece' by Toby Segaran.

var ml = require('machine_learning');

var data =[['slashdot','USA','yes',18],
           ['google','France','yes',23],
           ['digg','USA','yes',24],
           ['kiwitobes','France','yes',23],
           ['google','UK','no',21],
           ['(direct)','New Zealand','no',12],
           ['(direct)','UK','no',21],
           ['google','USA','no',24],
           ['slashdot','France','yes',19],
           ['digg','USA','no',18,],
           ['google','UK','no',18,],
           ['kiwitobes','UK','no',19],
           ['digg','New Zealand','yes',12],
           ['slashdot','UK','no',21],
           ['google','UK','yes',18],
           ['kiwitobes','France','yes',19]];
var result = ['None','Premium','Basic','Basic','Premium','None','Basic','Premium','None','None','None','None','Basic','None','Basic','Basic'];

var dt = new ml.DecisionTree({
    data : data,
    result : result
});

dt.build();

// dt.print();

console.log("Classify : ", dt.classify(['(direct)','USA','yes',5]));

dt.prune(1.0); // 1.0 : mingain.
dt.print();

NMF (Non-negative matrix factorization)

var ml = require('machine_learning');
var matrix = [[22,28],
              [49,64]];

var result = ml.nmf.factorize({
    matrix : matrix,
    features : 3,
    epochs : 100
});

console.log("First Matrix : ",result[0]);
console.log("Second Matrix : ",result[1]);

##License

(The MIT License)

Copyright (c) 2014 Joon-Ku Kang <[email protected]>

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the 'Software'), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.