m4th
v0.1.0
Published
Math stuff
Downloads
319
Maintainers
Readme
m4th
A library to use in the browser or node.js. It currently contains:
- Basic Matrix operations
- LU decomposition
- UD decomposition (optimized cholesky decomposition)
Browser
To use the library in the browser, you need to include this JavaScript file:
<script src="m4th.min.js"></script>
It exports the global m4th
object. Now you can access e.g. the matrix constructor with:
var M = m4th.matrix;
The following browsers are tested:
node.js
You can install this package with:
npm install m4th
Now you can load e.g. the matrix constructor with:
var M = require('m4th/matrix');
Examples
Matrix Creation
Create a 2x3 matrix (2 rows, 3 columns) and a 4x4 matrix with undefined
entries:
var A, B;
A = M(2, 3);
B = M(4);
Create a 2x2 matrix and a 2x3 matrix with the given content:
var A, B;
A = M([
3, 2,
1, 0
]);
B = M(2, [
1, 2, 3,
4, 5, 7
]);
Matrix Entries
Each matrix has readable rows
and columns
properties:
console.log('Matrix A has ' + A.rows + ' rows and ' + A.columns + ' columns.');
Matrix entries can be accessed with get()
and set()
(indices start at 0
):
var a = A.get(0, 3); // get entry in row 0 and column 3
A.set(1, 2, 3); // set entry in row 1 and column 2 to value 3
You can chain set()
:
A.set(1, 0, 3).set(1, 1, 4).set(1, 2, 5);
Imperative / Functional
Calculations on matrices can be done in imperative or functional style.
For example the frobenius norm of a matrix A
can be calculated imperatively:
var i, j, a, norm;
norm = 0;
for (i = 0; i < A.rows; i += 1) { // iterate matrix rows
for (j = 0; j < A.columns; j += 1) { // iterate matrix columns
a = A.get(i, j);
norm += a * a;
}
}
norm = Math.sqrt(norm);
But we can do better using each()
which takes a callback as an argument:
var norm = 0;
A.each(function (a) { // iterate matrix entries
norm += a * a;
});
norm = Math.sqrt(norm);
In a more functional style the same can be expressed with map()
and reduce()
:
var square, add, norm;
// helper functions
square = function (x) {
return x * x;
};
add = function (x, y) {
return x + y;
};
// calculate norm
norm = Math.sqrt(A.map(square).reduce(add));
This now reads nicer than the imperative approach.
If performance is important, you can remove the map()
call (which creates a temporary matrix) and use a single
reduce()
instead:
var addSquared, norm;
// helper function
addSquared = function (x, y) {
return x + y * y;
};
// calculate norm
norm = Math.sqrt(A.reduce(addSquared, 0));
Matrix Operations
// calculate some results without changing the matrices A, B and C:
console.log('A*B = ' + A.mult(B));
console.log('B+C = ' + B.add(C));
console.log('C-B = ' + C.minus(B));
console.log('B*3 = ' + B.times(3));
console.log('B^t = ' + B.transp());
console.log('fill B with constant value = ' + B.fill(2));
console.log('copy of A = ' + A.clone());
console.log('A is square? = ' + A.isSquare());
console.log('A has same size as B? = ' + A.isSize(B));
map()
Create a 5x5 hilbert matrix:
var H = M(5).map(function (h, i, j) {
return 1 / (i + j + 1);
});
LU decomposition
var A, y, LU, x, Ainv;
// create some matrices:
A = M([
2, 1, -1,
-3, -1, 2,
-2, 1, 2
]);
y = M(3, [
8,
-11,
-3
]);
// LU decompose matrix A
LU = m4th.lu(A); // node.js: require('m4th/lu')(A);
// calculate solution for: y = A*x
x = LU.solve(y);
// invert matrix A
Ainv = LU.getInverse();
UD decomposition
var A, y, UD, x;
// create some matrices:
A = M([
2, 1, 1, 3, 2,
1, 2, 2, 1, 1,
1, 2, 9, 1, 5,
3, 1, 1, 7, 1,
2, 1, 5, 1, 8
]);
y = M(5, [ -2, 4, 3, -5, 1 ]);
// UD decompose matrix A
UD = m4th.ud(A); // node.js: require('m4th/ud')(A);
// calculate solution for: y = A*x
x = UD.solve(y);