ltsort
v4.0.0
Published
Topological Sort with Support for Levels
Downloads
34
Maintainers
Readme
Ltsort
Table of Contents generated with DocToc
Ltsort
Sample Usage
@use_relatives = ( T, done ) ->
{ Ltsort } = require '../../../apps/ltsort'
g = new Ltsort()
#.........................................................................................................
g.add { name: 'getup', }
g.add { name: 'brushteeth', }
g.add { name: 'shop', }
g.add { name: 'cook', precedes: 'eat', }
g.add { name: 'serve', needs: 'cook', precedes: 'eat', }
g.add { name: 'dishes', needs: 'eat', precedes: 'sleep', }
g.add { name: 'loner1', }
g.add { name: 'loner2', }
g.add { name: 'loner3', }
g.add { name: 'sleep', }
g.add { name: 'eat', needs: [ 'cook', 'shop', ], }
#.........................................................................................................
do ->
result = g.linearize()
T?.eq result, [ 'getup', 'brushteeth', 'shop', 'cook', 'serve', 'eat', 'dishes', 'sleep', 'loner1', 'loner2', 'loner3' ]
#.........................................................................................................
do ->
result = g.linearize { groups: true, }
T?.eq result, [ [ 'getup', 'brushteeth', 'loner1', 'loner2', 'loner3' ], [ 'shop', 'cook' ], [ 'serve' ], [ 'eat' ], [ 'dishes' ], [ 'sleep' ] ]
#.........................................................................................................
done?()
@use_global_relatives = ( T, done ) ->
{ Ltsort } = require '../../../apps/ltsort'
g = new Ltsort()
#.........................................................................................................
g.add { name: 'getup', precedes: '*', }
g.add { name: 'brushteeth', precedes: '*', }
g.add { name: 'shop', precedes: '*', }
g.add { name: 'cook', precedes: 'eat', }
g.add { name: 'serve', needs: 'cook', precedes: 'eat', }
g.add { name: 'dishes', needs: '*', }
g.add { name: 'loner1', }
g.add { name: 'loner2', }
g.add { name: 'loner3', }
g.add { name: 'sleep', needs: '*', }
g.add { name: 'eat', needs: [ 'cook', 'shop', ], }
#.........................................................................................................
do ->
result = g.linearize()
T?.eq result, [ 'getup', 'brushteeth', 'shop', 'cook', 'serve', 'eat', 'loner1', 'loner2', 'loner3', 'dishes', 'sleep' ]
#.........................................................................................................
do ->
result = g.linearize { groups: true, }
T?.eq result, [ [], [ 'getup' ], [ 'brushteeth' ], [ 'shop' ], [ 'cook', 'loner1', 'loner2', 'loner3' ], [ 'serve' ], [ 'eat' ], [ 'dishes' ], [ 'sleep' ] ]
#.........................................................................................................
done?()
- use
precedes
andneeds
to indicate ordering relationships (its 'relatives') - both the named node and its relatives can be new or known to the graph being built (IOW one can use 'forward references'; these nodes are implicitly created)
- single names can use a string for
precedes
andneeds
; multiple nodes must use several calls or a list of node names - nodes for which no explicit relatives are given are called 'loners'
- call
g.linearize()
to get a list of node names according to their topological sort- this will fail with an exception should the graph contain any cycles (as in 'a before b, b before c, c before a', which is impossible to satisfy)
- generally, the sorting of the linearization will be 'stable' in the sense that the ordering of the names in the linearization will preserve the ordering of their introduction to the graph
- call
g.linearize { groups: true, }
likeg.linearize { groups: false, }
(the default), but returning a list of lists of names with the idea that all tasks identified in a sublist do not have an explicit mutual ordering in relation and may, therefore, be executed in parallel- the first (and possibly empty) sublist will always contain the 'lonely' nodes (those without an ordering to any other node); if these nodes denote tasks, they may be executed at any time between starting and completing the complex activity described by the graph. All other groups must have finished all their subtasks before proceding to the next group
- the linearization of an empty graph is an empty list
[]
. The grouped linearization of an empty graph is a list with a single empty list[[]]
. the empty list signifies 'no loners'. - use a star to denote when a node
precedes
orneeds
all others- using a star applies the ordering relation—
precedes
orneeds
—to all known nodes except the current one. Nodes that are added later may still come before one that was added earlier as{ precedes: '*', }
or after one added earlier as{ needs: '*', }
- should there be more than one node with
{ precedes: '*', }
, later nodes will override earlier ones; therefore, adding{ name: 't1', precedes: '*', }
,{ name: 't2', precedes: '*', }
,{ name: 't3', precedes: '*', }
to an empty graph will cause the first three places be occupied byt3
on top, followed byt2
, andt1
, in that order. The same is true for{ needs: '*', }
.
- using a star applies the ordering relation—
To Do
- [–] modernize
- [–] rewrite as class
- [–] should we support anything but strings as keys?
- [–] do allow to override
before: '*'
w/out having to resort to tricks. Might want to resort to the principle that later statements should override earlier ones.
Is Done
- [+] support symbolic
*
star to mean 'before, after any other', as implemented in - [+] use more explicit
cfg
(named keys) API - [+] consider to rename
after
->needs
orfollows
,before
->needed_by
orprecedes