llm-api
v1.6.0
Published
Fully typed chat APIs for OpenAI and Azure's chat models - with token checking and retries
Downloads
6,188
Maintainers
Readme
✨ LLM API
Fully typed chat APIs for OpenAI, Anthropic, and Azure's chat models for browser, edge, and node environments.
👋 Introduction
- Clean interface for text and chat completion for OpenAI, Anthropic, and Azure models
- Catch token overflow errors automatically on the client side
- Handle rate limit and any other API errors as gracefully as possible (e.g. exponential backoff for rate-limit)
- Support for browser, edge, and node environments
- Works great with zod-gpt for outputting structured data
import { OpenAIChatApi } from 'llm-api';
const openai = new OpenAIChatApi({ apiKey: 'YOUR_OPENAI_KEY' });
const resText = await openai.textCompletion('Hello');
const resChat = await openai.chatCompletion({
role: 'user',
content: 'Hello world',
});
🔨 Usage
Install
This package is hosted on npm:
npm i llm-api
yarn add llm-api
Model Config
To configure a new model endpoint:
const openai = new OpenAIChatApi(params: OpenAIConfig, config: ModelConfig);
These model config map to OpenAI's config directly, see doc: https://platform.openai.com/docs/api-reference/chat/create
interface ModelConfig {
model?: string;
contextSize?: number;
maxTokens?: number;
temperature?: number;
topP?: number;
stop?: string | string[];
presencePenalty?: number;
frequencyPenalty?: number;
logitBias?: Record<string, number>;
user?: string;
// use stream mode for API response, the streamed tokens will be sent to `events in `ModelRequestOptions`
stream?: boolean;
}
Request
To send a completion request to a model:
const text: ModelResponse = await openai.textCompletion(api: CompletionApi, prompt: string, options: ModelRequestOptions);
const completion: ModelResponse = await openai.chatCompletion(api: CompletionApi, messages: ChatCompletionRequestMessage, options: ModelRequestOptions);
// respond to existing chat session, preserving the past messages
const response: ModelResponse = await completion.respond(message: ChatCompletionRequestMessage, options: ModelRequestOptions);
options You can override the default request options via this parameter. A request will automatically be retried if there is a ratelimit or server error.
type ModelRequestOptions = {
// set to automatically add system message (only relevant when using textCompletion)
systemMessage?: string | (() => string);
// send a prefix to the model response so the model can continue generating from there, useful for steering the model towards certain output structures.
// the response prefix WILL be appended to the model response.
// for Anthropic's models ONLY
responsePrefix?: string;
// function related parameters are for OpenAI's models ONLY
functions?: ModelFunction[];
// force the model to call the following function
callFunction?: string;
// default: 3
retries?: number;
// default: 30s
retryInterval?: number;
// default: 60s
timeout?: number;
// the minimum amount of tokens to allocate for the response. if the request is predicted to not have enough tokens, it will automatically throw a 'TokenError' without sending the request
// default: 200
minimumResponseTokens?: number;
// the maximum amount of tokens to use for response
// NOTE: in OpenAI models, setting this option also requires contextSize in ModelConfig to be set
maximumResponseTokens?: number;
};
Response
Completion responses are in the following format:
interface ModelResponse {
content?: string;
// used to parse function responses
name?: string;
arguments?: JsonValue;
usage?: {
promptTokens: number;
completionTokens: number;
totalTokens: number;
};
// function to send another message in the same 'chat', this will automatically append a new message to the messages array
respond: (
message: ChatCompletionRequestMessage,
opt?: ModelRequestOptions,
) => Promise<ModelResponse>;
}
📃 Token Errors
A common error with LLM APIs is token usage - you are only allowed to fit a certain amount of data in the context window.
If you set a contextSize
key, llm-api
will automatically determine if the request will breach the token limit BEFORE sending the actual request to the model provider (e.g. OpenAI). This will save one network round-trip call and let you handle these type of errors in a responsive manner.
const openai = new OpenAIChatApi(
{ apiKey: 'YOUR_OPENAI_KEY' },
{ model: 'gpt-4-0613', contextSize: 8129 },
);
try {
const res = await openai.textCompletion(...);
} catch (e) {
if (e instanceof TokenError) {
// handle token errors...
}
}
🔷 Azure
llm-api
also comes with support for Azure's OpenAI models. The Azure version is usually much faster and more reliable than OpenAI's own API endpoints. In order to use the Azure endpoints, you must include 2 Azure specific options when initializing the OpenAI model, azureDeployment
and azureEndpoint
. The apiKey
field will also now be used for the Azure API key.
You can find the Azure API key and endpoint in the Azure Portal. The Azure Deployment must be created under the Azure AI Portal.
Note that the model
parameter in ModelConfig
will be ignored when using Azure. This is because in the Azure system, the model
is selected on deployment creation, not on run time.
const openai = new OpenAIChatApi({
apiKey: 'AZURE_OPENAI_KEY',
azureDeployment: 'AZURE_DEPLOYMENT_NAME',
azureEndpoint: 'AZURE_ENDPOINT',
// optional, defaults to 2023-06-01-preview
azureApiVersion: 'YYYY-MM-DD',
});
🔶 Anthropic
Anthropic's models have the unique advantage of a large 100k context window and extremely fast performance. If no explicit model is specified, llm-api
will default to the Claude Sonnet model.
const anthropic = new AnthropicChatApi(params: AnthropicConfig, config: ModelConfig);
🔶 Groq
Groq is a new LLM inference provider that provides the fastest inference speed on the market. They currently support Meta's Llama 2 and Mistral's Mixtral models.
const groq = new GroqChatApi(params: GroqConfig, config: ModelConfig);
❖ Amazon Bedrock
const conf = {
accessKeyId: 'AWS_ACCESS_KEY',
secretAccessKey: 'AWS_SECRET_KEY',
};
const bedrock = new AnthropicBedrockChatApi(params: BedrockConfig, config: ModelConfig);
🤓 Debugging
llm-api
usese the debug
module for logging & error messages. To run in debug mode, set the DEBUG
env variable:
DEBUG=llm-api:* yarn playground
You can also specify different logging types via:
DEBUG=llm-api:error yarn playground
DEBUG=llm-api:log yarn playground