npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

lil-csv

v1.4.6

Published

Mini 1k module for CSV, TSV, PSV file manipulations

Downloads

1,028

Readme

lil-csv

Mini 1k module for CSV, TSV, PSV file manipulations

  • Parse CSV text to deep JSON objects.
  • Customise each column parsing with your code.
  • Serialise deep JSON objects to CSV.
  • Rename CSV headers and object keys on the fly.
  • Simply generate CSV from arrays of strings.
  • Parse CSV to simple arrays of strings.
  • TSV (tab-separated values), PSV (pipe-separated values), and other-separated values.

Usage

npm i lil-csv

Import

import { parse, generate } from "lil-csv";
// or
const { parse, generate } = require("lil-csv");

Performance

lil-csv v1.4 is faster than fast-csv. See these benchmarks. Parsing a 300,000 lines CSV file takes about 1 sec on a Macbook Pro 2019.

However, if you have insanely large files to parse then use papaparse. The module is rather fast, featureful, and support data streaming. Although, few times larger than lil-csv, does not support modern ES6 modules or treeshaking.

Examples

Objects

Parse to object

const text = `name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`;

const rows = parse(text);

assert.deepStrictEqual(rows, [
  {
    name: "John Noa",
    address: {
      street: "7 Blue Bay, Berala",
      country: "AU",
    },
  },
]);

Generate CSV from objects

const rows = [
  {
    name: "John Noa",
    address: {
      street: "7 Blue Bay, Berala",
      country: "AU",
    },
  },
];

const text = generate(rows);

assert.deepStrictEqual(
  text,
  `name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`
);

Arrays

Parse to arrays

const text = `name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`;

const rows = parse(text, { header: false });

assert.deepStrictEqual(rows, [
  ["name", "address.street", "address.country"],
  ["John Noa", "7 Blue Bay, Berala", "AU"],
]);

Generate CSV from arrays

const rows = [
  ["name", "address.street", "address.country"],
  ["John Noa", "7 Blue Bay, Berala", "AU"],
];

const text = generate(rows, { header: false });

assert.deepStrictEqual(
  text,
  `name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`
);

Customise parsed objects

Rename columns, custom parse data:

const countryLookup = { PH: "Philippines", AU: "Australia" };

const text = `name,date of birth,address.street,address.country,address.postcode
John Noa,N/A,"7 Blue Bay, Berala",AU,XXXX
Lily Noa,1992-12-26,"7 Blue Bay, Berala",AU,2222`;

const rows = parse(text, {
  header: {
    name: "fullName",
    "date of birth": {
      newName: "dob",
      parse: (v) => (isNaN(new Date(v).valueOf()) ? null : v),
    },
    "address.street": String,
    "address.country": {
      newName: "country",
      parse: (v) => countryLookup[v.toUpperCase()] || null,
    },
    "address.postcode": (v) => (v && v.match && v.match(/^\d{4}$/) ? v : null),
  },
});

assert.deepStrictEqual(rows, [
  {
    fullName: "John Noa",
    dob: null,
    address: {
      street: "7 Blue Bay, Berala",
      postcode: null,
    },
    country: "Australia",
  },
  {
    fullName: "Lily Noa",
    dob: "1992-12-26",
    address: {
      street: "7 Blue Bay, Berala",
      postcode: "2222",
    },
    country: "Australia",
  },
]);

Customise CSV generation

Rename columns, custom stringify data:

const countryReverseLookup = { PHILIPPINES: "PH", AUSTRALIA: "AU" };

const rows = [
  {
    fullName: "John Noa",
    dob: null,
    address: {
      street: "7 Blue Bay, Berala",
      postcode: null,
    },
    country: "Australia",
  },
  {
    fullName: "Lily Noa",
    dob: "1992-12-26",
    address: {
      street: "7 Blue Bay, Berala",
      postcode: "2222",
    },
    country: "Australia",
  },
];

const text = generate(rows, {
  header: {
    fullName: "name",
    dob: {
      newName: "date of birth",
      stringify: (v) => (!v || isNaN(new Date(v).valueOf()) ? "N/A" : v),
    },
    "address.street": String,
    country: {
      newName: "address.country",
      stringify: (v) => countryReverseLookup[v.toUpperCase()] || "N/A",
    },
    "address.postcode": (v) => (v && v.match && v.match(/^\d{4}$/) ? v : "N/A"),
  },
});

assert.deepStrictEqual(
  text,
  `name,date of birth,address.street,address.country,address.postcode
John Noa,N/A,"7 Blue Bay, Berala",AU,N/A
Lily Noa,1992-12-26,"7 Blue Bay, Berala",AU,2222`
);

Customise data parsing

Parse each column differently:

const text = `name,isCompany,createdAt,balance
John Noa,false,2021-03-18T03:38:12.641Z,9000.12
Acme Inc,true,2021-11-22,1000150.10`;

const rows = parse(text, {
  header: {
    "*": String, // Do not skip unknown headers, instead parse them as String
    isCompany: (v) => v !== "false",
    createdAt: (v) => new Date(v),
    balance: Number,
  },
});

assert.deepStrictEqual(rows, [
  {
    name: "John Noa",
    isCompany: false,
    createdAt: new Date("2021-03-18T03:38:12.641Z"),
    balance: 9000.12,
  },
  {
    name: "Acme Inc",
    isCompany: true,
    createdAt: new Date("2021-11-22"),
    balance: 1000150.1,
  },
]);

Customise data serialisation

Stringify each column differently:

const rows = [
  {
    name: "John Noa",
    isCompany: false,
    createdAt: new Date("2021-03-18T03:38:12.641Z"),
    balance: 9000.12,
  },
  {
    name: "Acme Inc",
    isCompany: true,
    createdAt: new Date("2021-11-22"),
    balance: 1000150.1,
  },
];

const text = generate(rows, {
  header: {
    "*": String, // Do not skip undeclared headers, instead serialise them as String
    createdAt: (v, entry) =>
      new Date(v).toISOString().substr(0, entry.isCompany ? 10 : 100),
    balance: (v) => v.toFixed(2),
  },
});

assert.deepStrictEqual(
  text,
  `name,isCompany,createdAt,balance
John Noa,false,2021-03-18T03:38:12.641Z,9000.12
Acme Inc,true,2021-11-22,1000150.10`
);

API

parse(text, [options = { header: true, delimiter: ",", quoteChar: '"', escapeChar: "\\" }])

  • text - String, the string to parse.
  • options - Object, optional parsing settings.
    • options.delimiter - String character, value separator. E.g. \t for TSV, | for PSV, etc. Default is comma: ,.
    • options.quoteChar - String character. Which char to use to wrap strings. Default is double quotes: ".
    • options.escapeChar - String character, the escape character used within that file. Default is backslash: \.
    • options.header - Boolean, or Array of string, or Object. Default is true.
      • Boolean
        • true - create JSON objects from CSV rows. Assume first row of the text is a header, would be used as object keys.
        • false - create string arrays from CSV rows.
      • Array - create JSON objects from CSV rows. The array would be used as object keys.
      • Object - create JSON objects from CSV rows.
        • Object keys - CSV header name, Object values - either string, of function, or Object.
        • value is String - rename CSV header. E.g. "User First Name": "user.firstName"
        • value is Function - use this function to deserialize a CSV cell to a value. E.g. convert "2020-12-12" string to a Date.
        • value is Object - setting for each column name.
          • header[].parse - use this function to deserialize a CSV cell to a value. E.g. convert "2020-12-12" string to a Date.
          • header[].newName - rename CSV header. E.g. "User First Name": "user.firstName"
        • key is "*", value is used as a default column parser for unknown columns.

generate(rows, [options = { header: true, delimiter: ",", quoteChar: '"', escapeChar: "\\", wrapStrings: false, lineTerminator: "\n" }])

  • rows - array of arrays. The data to generate the CSV from. Each row must be euther array of object.
  • options - Object, optional settings.
    • options.delimiter - String character, value separator. E.g. \t for TSV, | for PSV, etc. Default is comma: ,.
    • options.quoteChar - String character. Which char to use to wrap strings. Default is double quotes: ".
    • options.escapeChar - String character, the escape character used within that file. Default is backslash: \.
    • options.wrapStrings - Boolean, set it to true if all string cells must be wrapped with the quoteChar. Default is false.
    • options.lineTerminator - String character, the new line character used within that file.
    • options.header - Boolean, or Array of string, or Object. Default is true.
      • Boolean
        • true - autodetect column names (header) from the first row in the rows. If first row is an object, then its keys would be the column names. If first row is an array, then it is assumed to be the header.
        • false - generate CSV from rows without any column names (header).
      • Array - array of strings to override all column names. If rows are objects, then each column name must match object keys.
      • Object - generate CSV from these columns ONLY.
        • Object keys - the only column names to be saved in the CSV file, Object values - either string, of function, or Object.
        • value is String - rename CSV header. E.g. "user.firstName": "User First Name"
        • value is Function - use this function to stringify a CSV cell. E.g. convert Date to "2020-12-12" string.
        • value is Object - setting for each column name.
          • header[].stringify - use this function to stringify a CSV cell. E.g. convert Date to "2020-12-12" string.
          • header[].newName - rename CSV header. E.g. "user.firstName": "User First Name"
        • key is "*", value is used as a default column serialiser for unknown columns.