lil-csv
v1.4.6
Published
Mini 1k module for CSV, TSV, PSV file manipulations
Downloads
1,028
Maintainers
Readme
lil-csv
Mini 1k module for CSV, TSV, PSV file manipulations
- Parse CSV text to deep JSON objects.
- Customise each column parsing with your code.
- Serialise deep JSON objects to CSV.
- Rename CSV headers and object keys on the fly.
- Simply generate CSV from arrays of strings.
- Parse CSV to simple arrays of strings.
- TSV (tab-separated values), PSV (pipe-separated values), and other-separated values.
Usage
npm i lil-csv
Import
import { parse, generate } from "lil-csv";
// or
const { parse, generate } = require("lil-csv");
Performance
lil-csv
v1.4 is faster than fast-csv
. See these benchmarks.
Parsing a 300,000 lines CSV file takes about 1 sec on a Macbook Pro 2019.
However, if you have insanely large files to parse then use papaparse
. The module is rather fast, featureful, and support data streaming. Although, few times larger than lil-csv
, does not support modern ES6 modules or treeshaking.
Examples
Objects
Parse to object
const text = `name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`;
const rows = parse(text);
assert.deepStrictEqual(rows, [
{
name: "John Noa",
address: {
street: "7 Blue Bay, Berala",
country: "AU",
},
},
]);
Generate CSV from objects
const rows = [
{
name: "John Noa",
address: {
street: "7 Blue Bay, Berala",
country: "AU",
},
},
];
const text = generate(rows);
assert.deepStrictEqual(
text,
`name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`
);
Arrays
Parse to arrays
const text = `name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`;
const rows = parse(text, { header: false });
assert.deepStrictEqual(rows, [
["name", "address.street", "address.country"],
["John Noa", "7 Blue Bay, Berala", "AU"],
]);
Generate CSV from arrays
const rows = [
["name", "address.street", "address.country"],
["John Noa", "7 Blue Bay, Berala", "AU"],
];
const text = generate(rows, { header: false });
assert.deepStrictEqual(
text,
`name,address.street,address.country
John Noa,"7 Blue Bay, Berala",AU`
);
Customise parsed objects
Rename columns, custom parse data:
const countryLookup = { PH: "Philippines", AU: "Australia" };
const text = `name,date of birth,address.street,address.country,address.postcode
John Noa,N/A,"7 Blue Bay, Berala",AU,XXXX
Lily Noa,1992-12-26,"7 Blue Bay, Berala",AU,2222`;
const rows = parse(text, {
header: {
name: "fullName",
"date of birth": {
newName: "dob",
parse: (v) => (isNaN(new Date(v).valueOf()) ? null : v),
},
"address.street": String,
"address.country": {
newName: "country",
parse: (v) => countryLookup[v.toUpperCase()] || null,
},
"address.postcode": (v) => (v && v.match && v.match(/^\d{4}$/) ? v : null),
},
});
assert.deepStrictEqual(rows, [
{
fullName: "John Noa",
dob: null,
address: {
street: "7 Blue Bay, Berala",
postcode: null,
},
country: "Australia",
},
{
fullName: "Lily Noa",
dob: "1992-12-26",
address: {
street: "7 Blue Bay, Berala",
postcode: "2222",
},
country: "Australia",
},
]);
Customise CSV generation
Rename columns, custom stringify data:
const countryReverseLookup = { PHILIPPINES: "PH", AUSTRALIA: "AU" };
const rows = [
{
fullName: "John Noa",
dob: null,
address: {
street: "7 Blue Bay, Berala",
postcode: null,
},
country: "Australia",
},
{
fullName: "Lily Noa",
dob: "1992-12-26",
address: {
street: "7 Blue Bay, Berala",
postcode: "2222",
},
country: "Australia",
},
];
const text = generate(rows, {
header: {
fullName: "name",
dob: {
newName: "date of birth",
stringify: (v) => (!v || isNaN(new Date(v).valueOf()) ? "N/A" : v),
},
"address.street": String,
country: {
newName: "address.country",
stringify: (v) => countryReverseLookup[v.toUpperCase()] || "N/A",
},
"address.postcode": (v) => (v && v.match && v.match(/^\d{4}$/) ? v : "N/A"),
},
});
assert.deepStrictEqual(
text,
`name,date of birth,address.street,address.country,address.postcode
John Noa,N/A,"7 Blue Bay, Berala",AU,N/A
Lily Noa,1992-12-26,"7 Blue Bay, Berala",AU,2222`
);
Customise data parsing
Parse each column differently:
const text = `name,isCompany,createdAt,balance
John Noa,false,2021-03-18T03:38:12.641Z,9000.12
Acme Inc,true,2021-11-22,1000150.10`;
const rows = parse(text, {
header: {
"*": String, // Do not skip unknown headers, instead parse them as String
isCompany: (v) => v !== "false",
createdAt: (v) => new Date(v),
balance: Number,
},
});
assert.deepStrictEqual(rows, [
{
name: "John Noa",
isCompany: false,
createdAt: new Date("2021-03-18T03:38:12.641Z"),
balance: 9000.12,
},
{
name: "Acme Inc",
isCompany: true,
createdAt: new Date("2021-11-22"),
balance: 1000150.1,
},
]);
Customise data serialisation
Stringify each column differently:
const rows = [
{
name: "John Noa",
isCompany: false,
createdAt: new Date("2021-03-18T03:38:12.641Z"),
balance: 9000.12,
},
{
name: "Acme Inc",
isCompany: true,
createdAt: new Date("2021-11-22"),
balance: 1000150.1,
},
];
const text = generate(rows, {
header: {
"*": String, // Do not skip undeclared headers, instead serialise them as String
createdAt: (v, entry) =>
new Date(v).toISOString().substr(0, entry.isCompany ? 10 : 100),
balance: (v) => v.toFixed(2),
},
});
assert.deepStrictEqual(
text,
`name,isCompany,createdAt,balance
John Noa,false,2021-03-18T03:38:12.641Z,9000.12
Acme Inc,true,2021-11-22,1000150.10`
);
API
parse(text, [options = { header: true, delimiter: ",", quoteChar: '"', escapeChar: "\\" }])
text
- String, the string to parse.options
- Object, optional parsing settings.options.delimiter
- String character, value separator. E.g.\t
for TSV,|
for PSV, etc. Default is comma:,
.options.quoteChar
- String character. Which char to use to wrap strings. Default is double quotes:"
.options.escapeChar
- String character, the escape character used within that file. Default is backslash:\
.options.header
- Boolean, or Array of string, or Object. Default istrue
.- Boolean
true
- create JSON objects from CSV rows. Assume first row of the text is a header, would be used as object keys.false
- create string arrays from CSV rows.
- Array - create JSON objects from CSV rows. The array would be used as object keys.
- Object - create JSON objects from CSV rows.
- Object keys - CSV header name, Object values - either string, of function, or Object.
- value is String - rename CSV header. E.g.
"User First Name": "user.firstName"
- value is Function - use this function to deserialize a CSV cell to a value. E.g. convert "2020-12-12" string to a Date.
- value is Object - setting for each column name.
header[].parse
- use this function to deserialize a CSV cell to a value. E.g. convert "2020-12-12" string to a Date.header[].newName
- rename CSV header. E.g."User First Name": "user.firstName"
- key is
"*"
, value is used as a default column parser for unknown columns.
- Boolean
generate(rows, [options = { header: true, delimiter: ",", quoteChar: '"', escapeChar: "\\", wrapStrings: false, lineTerminator: "\n" }])
rows
- array of arrays. The data to generate the CSV from. Each row must be euther array of object.options
- Object, optional settings.options.delimiter
- String character, value separator. E.g.\t
for TSV,|
for PSV, etc. Default is comma:,
.options.quoteChar
- String character. Which char to use to wrap strings. Default is double quotes:"
.options.escapeChar
- String character, the escape character used within that file. Default is backslash:\
.options.wrapStrings
- Boolean, set it totrue
if all string cells must be wrapped with thequoteChar
. Default isfalse
.options.lineTerminator
- String character, the new line character used within that file.options.header
- Boolean, or Array of string, or Object. Default istrue
.- Boolean
true
- autodetect column names (header) from the first row in therows
. If first row is an object, then its keys would be the column names. If first row is an array, then it is assumed to be the header.false
- generate CSV fromrows
without any column names (header).
- Array - array of strings to override all column names. If
rows
are objects, then each column name must match object keys. - Object - generate CSV from these columns ONLY.
- Object keys - the only column names to be saved in the CSV file, Object values - either string, of function, or Object.
- value is String - rename CSV header. E.g.
"user.firstName": "User First Name"
- value is Function - use this function to stringify a CSV cell. E.g. convert Date to "2020-12-12" string.
- value is Object - setting for each column name.
header[].stringify
- use this function to stringify a CSV cell. E.g. convert Date to "2020-12-12" string.header[].newName
- rename CSV header. E.g."user.firstName": "User First Name"
- key is
"*"
, value is used as a default column serialiser for unknown columns.
- Boolean