npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

libtuple

v0.0.8

Published

Memory-efficient tuple implementation.

Downloads

26

Readme

libtuple

Test Memory-efficient immutables in 13.5kB

Install & Use

libtuple is now ESM compliant!

npm:

You can install libtuple via npm:

$ npm install libtuple

Tuples are...

(Groups, Records, and Dicts are just specialized Tuples)

Immutable

Tuples are immutable. Any attempt to modify them will not throw an error, but will silently fail, leaving the original values unchanged.

const tuple = Tuple('a', 'b', 'c');

tuple[0] = 'NEW VALUE'; // This will not change the tuple, it will still be 'a'

console.log( tuple[0] ); // 'a'

Composable

Tuples can be members of other tuples. This works as expected:

console.log( Tuple(Tuple(1, 2), Tuple(3, 4)) === Tuple(Tuple(1, 2), Tuple(3, 4)) );
// true

Iterable & Spreadable

Tuples and Groups can be looped over just like Arrays:

const tuple = Tuple(1, 2, 3);
for(const value of tuple) {
    console.log(value)
}

Records, and Dicts can also be iterated just like normal objects:

const record = Record({a: 1, b: 2, c: 3});
for(const [key, value] of Object.entries(record)) {
    console.log(key, value);
}

Tuples & Groups can be spread just like arrays:

const tuple = Tuple(1, 2, 3);
console.log([...tuple]); // [1, 2, 3]

Similarly, Records & Dicts can be spread into objects:

const record = Record({a: 1, b: 2, c: 3});
console.log({...record}); // {a: 1, b: 2, c: 3}

Usage

Simply import the functions from libtuple:

import { Tuple, Group, Record, Dict } from 'libtuple';

You can also import them via URL imports, or dynamic imports: (npm not required)

import { Tuple, Group, Record, Dict } from 'https://cdn.jsdelivr.net/npm/[email protected]/index.mjs';
const { Tuple, Group, Record, Dict } = await import('https://cdn.jsdelivr.net/npm/libtuple/index.mjs');

Tuple()

Pass a list of values to the Tuple() function. This value will be strictly equivalent to any tuple generated with the same values:

const tuple123 = Tuple(1, 2, 3);
tuple123 === Tuple(1, 2, 3); // true

const tuple321 = Tuple(3, 2, 1);
tuple123 === tuple321; // false

This is true for tuples with objects as well:

const a = {};
const b = [];
const c = new Date;

console.log( Tuple(a, b, c, 1, 2, 3) === Tuple(a, b, c, 1, 2, 3) ); //true

Group()

A Group() is similar to a Tuple(), except they're not ordered:

Group(3, 2, 1) === Group(1, 2, 3); // true

Record()

A Record() works the same way, but works with keys & values, and is not ordered.

const [a, b, c] = [1, 2, 3];
Record({a, b, c}) === Record({c, b, a}); // true

Dict()

A Dict() is like an ordered Record():

const [a, b, c] = [1, 2, 3];
Dict({a, b, c}) === Dict({a, b, c}); // true
Dict({a, b, c}) === Dict({c, b, a}); // false

Schema

A Schema allows you to define a complex structure for your immutables. It is defined by one or more SchemaMappers, which take a value and will either return it, or throw an error:

import { Schema as s } from 'libtuple';

const boolSchema = s.boolean();

boolSchema(true);  // returns true
boolSchema(false); // returns false
boolSchema(123);   // throws an error

You can create schemas for Tuples, Groups, Records, and Dicts:

import { Schema as s } from 'libtuple';

const pointSchema = s.tuple(
    s.number(),
    s.number(),
);

const pointTuple = pointSchema([5, 10]);

console.log(pointTuple);

const userSchema = s.record({
    id: s.number(),
    email: s.string(),
});

const userRecord = userSchema({id: 1, email: '[email protected]'});

console.log(userRecord);

Schema.parse(schema, value)

Schema.parse() will return the parsed value, or NaN on error, since NaN is falsey, and NaN !== NaN.

import { Schema as s } from 'libtuple';

const boolSchema = s.boolean();

s.parse(boolSchema, true);  // returns true
s.parse(boolSchema, false); // returns false
s.parse(boolSchema, 123);   // returns NaN

SchemaMappers

Expand the sections below to see SchemaMapper documentation.

Schema.value(options)

  • options.map - Callback to transform the value after its been validated.
  • options.check - Throw a TypeError if this returns false.

Schema.drop()

Drop the value (always maps to undefined)

Schema.boolean(options)

  • options.map - Callback to transform the value after its been validated.

Schema.number(options)

  • options.min - Min value
  • options.max - Max value
  • options.map - Callback to transform the value after its been validated.
  • options.check - Throw a TypeError if this returns false.

Schema.bigint(options)

  • options.min - Min value
  • options.max - Max value
  • options.map - Callback to transform the value after its been validated.
  • options.check - Throw a TypeError if this returns false.

Schema.string(options)

  • options.min - Min length
  • options.max - Max length
  • options.map - Callback to transform the value after its been validated.
  • options.match - Throw a TypeError if this does NOT match
  • options.noMatch - Throw a TypeError if this DOES match
  • options.check - Throw a TypeError if this returns false.

Schema.array(options)

  • options.min - Min length
  • options.max - Max length
  • options.map - Callback to transform the value after its been validated.
  • options.each - Callback to transform each element.
  • options.check - Throw a TypeError if this returns false.

Schema.object(options)

  • options.class - Throw a TypeError if the class does not match.
  • options.map - Callback to transform the value after its been validated.
  • options.each - Callback to transform each element.
  • options.check - Throw a TypeError if this returns false.

Schema.function(options)

  • options.map - Callback to transform the value after its been validated.
  • options.check - Throw a TypeError if this returns false.

Schema.symbol(options)

  • options.map - Callback to transform the value after its been validated.
  • options.check - Throw a TypeError if this returns false.

Schema.null(options)

  • options.map - Callback to transform the value after its been validated.

Schema.undefined(options)

  • options.map - Callback to transform the value after its been validated.

Convenience methods for numbers

The following methods will call s.number with additional constraints added:

  • s.integer
  • s.float
  • s.NaN
  • s.infinity

Convenience methods for strings

The following methods will call s.string with additional constraints added:

  • s.numericString
    // options.min & options.max are overridden for numeric comparison.
    const positive = s.numericString({map: Number, min: Number.EPSILON});
    const negative = s.numericString({map: Number, max: -Number.EPSILON});
    
    negative('-100'); // -100
    positive('100');  //  100
    
    negative('5');    // ERROR
    positive('-5');   // ERROR
  • s.dateString
    // options.min & options.max are overridden for comparison with Date objects.
    const after1994 = s.dateString({min: new Date('01/01/1995')});
    
    after1994('07/04/1995'); // '01/01/1996'
    after1994('07/04/1989'); // ERROR
  • s.uuidString
    const uuidSchema = s.uuidString();
    uuidSchema('0ff5d941-f46a-4f4a-aec8-1d1ec117e2a3'); // '0ff5d941-f46a-4f4a-aec8-1d1ec117e2a3'
    uuidSchema('0ff5d941'); // ERROR
  • s.urlString
    const urlSchema = s.urlString();
    urlSchema('https://example.com'); // 'https://example.com'
    urlSchema('not a url'); // ERROR
  • s.emailString
    const emailSchema = s.emailString();
    emailSchema('[email protected]'); // 'https://example.com'
    emailSchema('not an email'); // ERROR
  • s.regexString
    const regexSchema = s.regexString();
    regexSchema('.+?'); // 'https://example.com'
    regexSchema('+++'); // ERROR
  • s.base64String
    const base64Schema = s.base64String();
    base64Schema('RXhhbXBsZSBzdHJpbmc='); // 'RXhhbXBsZSBzdHJpbmc=';
    base64Schema('notbase64'); // ERROR;
  • s.jsonString
    const jsonSchema = s.jsonString();
    jsonSchema('[0, 1, 2]'); // '[0, 1, 2]';
    jsonSchema('not json'); // ERROR;

Schema.or(...schemaMappers)

Map the value with the first matching SchemaMapper

import { Schema as s } from 'libtuple';

const dateSchema = s.or(
    s.string({match: /\d\d \w+ \d\d\d\d \d\d:\d\d:\d\d \w+?/, map: s => new Date(s)}),
    s.object({class: Date})
);

console.log( dateSchema('04 Apr 1995 00:12:00 GMT') );
console.log( dateSchema(new Date) );

Schema.repeat(r, schemaMapper)

Repeat a SchemaMapper r times

import { Schema as s } from 'libtuple';

const pointSchema = s.tuple(s.repeat(2, s.number()));

const point = pointSchema([5, 10]);

Schema.oneOf(literals = [], options = {})

Match the value to a set of literals with strict-equals comparison.

import { Schema as s } from 'libtuple';

const schema = s.oneOf(['something', 1234]);

s.parse(schema, 1234);          // 1234
s.parse(schema, 'something');   // 'something'
s.parse(schema, 'not on list'); // ERROR!

Schema.tuple(...values)

Map one or more values to a Tuple.

import { Schema as s } from 'libtuple';

const pointSchema = s.tuple(s.number(), s.number());

const point = pointSchema([5, 10]);

Schema.group(...values)

Map one or more values to a Group.

Schema.record(properties)

Map one or more properties to a Record.

import { Schema as s } from 'libtuple';

const companySchema = s.sRecord({
    name: s.string(),
    phone: s.string(),
    address: s.string(),
});

const company = companySchema({
    name: 'Acme Corporation',
    phone: '+1-000-555-1234',
    address: '123 Fake St, Anytown, USA',
});

console.log({company});

Schema.dict(properties)

Map one or more values to a Dict.

import { Schema as s } from 'libtuple';

const companySchema = s.sDict({
    name: s.string(),
    phone: s.string(),
    address: s.string(),
});

const company = companySchema({
    name: 'Acme Corporation',
    phone: '+1-000-555-1234',
    address: '123 Fake St, Anytown, USA',
});

console.log({company});

Schema.nTuple(...values)

Map n values to a Tuple. Will append each value in the input to the Tuple using the same mapper.

import { Schema as s } from 'libtuple';

const vectorSchema = s.nTuple(s.number());

const vec2 = vectorSchema([5, 10]);
const vec3 = vectorSchema([5, 10, 11]);
const vec4 = vectorSchema([5, 10, 11, 17]);

console.log({vec2, vec3, vec4});

Schema.nGroup(...values)

Map n values to a Group. Will append each value in the input to the Group using the same mapper.

Schema.nRecord(properties)

Map n properties to a Record. Will append additional properties without mapping or validation, if present.

import { Schema as s } from 'libtuple';

const companySchema = s.nRecord({
    name: s.string(),
    phone: s.string(),
    address: s.string(),
});

const company = companySchema({
    name: 'Acme Corporation',
    phone: '+1-000-555-1234',
    address: '123 Fake St, Anytown, USA',
    openHours: '9AM-7PM',
    slogan: 'We do business.',
});

Schema.nDict(properties)

Map n properties to a Dict. Will append additional properties without mapping or validation, if present.

Schema.sTuple(...values)

Strictly map values to a Tuple. Will throw an error if the number of values does not match.

import { Schema as s } from 'libtuple';

const pointSchema = s.sTuple(s.number(), s.number());

const pointA = pointSchema([5, 10]);
const pointB = pointSchema([5, 10, 1]); // ERROR!

Schema.sGroup(...values)

Strictly map values to a Group. Will throw an error if the number of values does not match.

Schema.sRecord(properties)

Strictly map values to a Record. Will throw an error if the number of values does not match.

import { Schema as s } from 'libtuple';

const companySchema = s.nRecord({
    name: s.string(),
    phone: s.string(),
    address: s.string(),
});

const company = companySchema({
    name: 'Acme Corporation',
    phone: '+1-000-555-1234',
    address: '123 Fake St, Anytown, USA',
});

// ERROR!
companySchema({
    name: 'Acme Corporation',
    phone: '+1-000-555-1234',
    address: '123 Fake St, Anytown, USA',
    openHours: '9AM-7PM',
    slogan: 'We do business.',
});

Schema.sDict(properties)

Strictly map values to a Dict. Will throw an error if the number of values does not match.

Schema.xTuple(...values)

Exclusively map values to a Tuple. Will drop any keys not present in the schema.

import { Schema as s } from './index.mjs';

const pointSchema = s.xTuple(s.number(), s.number());

const pointA = pointSchema([5, 10]); // [5, 10]
const pointB = pointSchema([5, 10, 1]); // Also [5, 10]

console.log(pointB[0]); // 5
console.log(pointB[1]); // 10
console.log(pointB[2]); // undefined

Schema.xGroup(...values)

Exclusively map values to a Group. Will drop any keys not present in the schema.

Schema.xRecord(properties)

Exclusively map values to a Record. Will drop any keys not present in the schema.

const companySchema = s.xRecord({
    name: s.string(),
    phone: s.string(),
    address: s.string(),
});

const company = companySchema({
    name: 'Acme Corporation',
    phone: '+1-000-555-1234',
    address: '123 Fake St, Anytown, USA',
    openHours: '9AM-7PM',
    slogan: 'We do business.',
});

console.log({company});

Schema.xDict(properties)

Exclusively map values to a Dict. Will drop any keys not present in the schema.


Gotchas

In JavaScript, object comparisons are based on reference, not on the actual content of the objects. This means that even if two objects have the same properties and values, they are considered different if they do not reference the same memory location.

For example, the following comparison returns false because each {} creates a new, unique object:

Tuple( {} ) === Tuple( {} ); // FALSE!!!

Each {} is a different object in memory, so the tuples containing them are not strictly equal. This is an important behavior to understand when working with tuples that contain objects.

To get the same tuple, you need to use the exact same object reference:

const a = {};

Tuple( a ) === Tuple( a ); // true :)

How It Works

A tuple is a type represented by a sequence of values. Unlike arrays, where [1, 2] !== [1, 2] (as they hold different object references), tuples provide a mechanism where Tuple(1, 2) === Tuple(1, 2). This ensures that tuples with the same values are always strictly equal, simplifying equality checks and enhancing memory efficiency.

For a sequence of primitives, this is trivial. Simply run JSON.stringify on the list of values and you've got a unique scalar that you can compare against others, and the object-reference problem is gone. Once you add objects to the mix, however, things can get complicated.

Stringifying objects won't work, since given almost any stringification mechanism, two completely disparate objects can be coerced to resolve the same value. That only leaves us with bean-counting. If we keep track of which objects and scalars we've seen, we can use the unique value of the object reference itself to construct a path through a tree of Maps where the leaves are the ultimate scalar value of the tuple. But in that case we'll use memory to hold objects and scalars in memory long after their tuples are useful. It seems we're backed into a corner here.

We could use trees of WeakMaps instead, however this case would only allow us to use objects, since scalars cannot be used as keys to a WeakMap. We'd end up with two disparate mechanisms, one for lists of only scalars, and one for lists of only objects. We just can't win here!

And that's where prefix-trees come in. Before constructing a tree of WeakMaps, the function will group all neighboring scalars into singular values. This will then leave us with a list of objects interspersed by singular scalars. Each scalar is then considered the prefix of the next object. When constructing or traversing the tree, first we come upon a node representing the object, then its prefix, then the next object in the chain. If the first (or any) object has no scalar prefix, we simply move directly to the next object. If the list ends in a scalar, simply add a terminator object reference as a key to the leaf, which holds the actual tuple object.

Organizing the hierarchy with the scalar prefixes after the objects allows us to exploit the WeakMap's garbage collection behavior. Once the object keys are GC'ed, so are the entries of the WeakMap. Holding a key here does not prevent objects from being GC'ed, so the branches of the internal tuple tree only stay in-memory as long as the objects they contain are in use.

Limitations

Testing

Run npm run test or node --test test.mjs in the terminal.

🍻 Licensed under the Apache License, Version 2.0

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.