lex-helpers
v0.6.0
Published
Functions for calculating Open Vocabulary lexical statistics.
Downloads
26
Maintainers
Readme
Lex-Helpers
Functions for calculating Open Vocabulary lexical statistics.
Quick Start
See lexFrequencyPipeline API documentation below. Also see
index.test.js
for a recreation of the
WWBP example.
// import your lexicon data as a JSON object (i.e., Record<string, number>)
import lexicon from "./lexicon.json" with { type: "json" }; // example
// import the lexFrequencyPipeline function from this module
import { lexFrequencyPipeline } from "lex-helpers";
// define your intercept
const intercept = 10.523; // example
// create your custom pipeline
const pipeline = lexFrequencyPipeline(lexicon, intercept);
// get some tokens
const doc1Tokens = ["the", "cat", "sat", "on", "the", "mat"]; // example
const doc2Tokens = ["the", "dog", "sat", "on", "the", "hat"]; // example
// run the pipeline
const doc1result = pipeline(doc1tokens); // {number}
const doc2result = pipeline(doc2tokens); // {number}
API
correctFloat
Corrects IEEE 754 floating point errors using toFixed
.
Example:
import { correctFloat } from "lex-helpers";
const initial = 0.1 + 0.2; // 0.30000000000000004
const corrected = correctFloat(initial); // 0.3
getFrequencies
Get the frequencies of tokens in a corpus.
Example:
import { getFrequencies } from "lex-helpers";
const tokens = ["the", "cat", "sat", "on", "the", "mat"];
const frequencies = getFrequencies(tokens); // Map<{ the: 2, cat: 1, sat: 1, on: 1, mat: 1 }>
getWeightedRelativeFrequencies
Get the weighted relative frequencies of tokens in a corpus.
Example:
import { getWeightedRelativeFrequencies } from "lex-helpers";
const lexicon = { the: -93, cat: 100, sat: 50, on: -10, mat: 5 };
const frequencies = { the: 2, cat: 1, sat: 1, on: 1, mat: 1 };
const weightedRelativeFrequencies = getWeightedRelativeFrequencies(
lexicon,
frequencies,
); // IterableIterator<[string, number]>
getLexiconValue
Get the final value of a token in a corpus.
Example:
import { getLexiconValue } from "lex-helpers";
const weightedRelativeFrequencies = {
the: 0.4,
cat: 0.1,
sat: 0.1,
on: 0.1,
mat: 0.1,
};
const intercept = 10.523;
const lexiconValue = getLexiconValue(weightedRelativeFrequencies, intercept); // {number}
lexFrequencyPipeline
Create a custom pipeline for calculating lexical statistics.
N.B. This is provided for simple use cases. For larger datasets it is recommended that you create your own pipeline using the functions provided in this module.
The pipeline is
getFrequencies -> getWeightedRelativeFrequencies -> getLexiconValue -> correctFloat
Example:
import { lexFrequencyPipeline } from "lex-helpers";
const lexicon = { the: 0.2, cat: 0.1, sat: 0.1, on: 0.1, mat: 0.1 };
const intercept = 10.523;
const pipeline = lexFrequencyPipeline(lexicon, intercept);
const tokens = ["the", "cat", "sat", "on", "the", "mat"];
const result = pipeline(tokens); // 12.523
lexBinPipeline
The same as lexFrequencyPipeline
but getFrequencies simply counts a token as present (1) or absent (0), instead of the token's frequency.
sumValues
Sum and correct the values of an object.
Example:
import { sumValues } from "lex-helpers";
const values = [{ value: 0.1 }, { value: 0.2 }, { value: 0.3 }];
const sum = sumValues(values); // 0.6
License
(C) 2017-24 P. Hughes. All rights reserved.
Released under the MIT licence.