lem
v1.0.0
Published
telemetry database for time-series data using LevelDB and node.js
Downloads
5
Maintainers
Readme
lem
database for time-series data using LevelDB and node.js
installation
$ npm install lem
usage
var lem = require('lem');
var level = require('level');
// create a new leveldb - this can also be a sub-level
var leveldb = level('/tmp/lemtest');
// create a new lem store using the leveldb
var lemdb = lem(leveldb);
// when nodes are indexed
lemdb.on('index', function(key, meta){
})
// a live stream from the database
lemdb.on('data', function(data){
})
// nodes are represented by keys
var key = 'myhouse.kitchen.fridge.temperature';
// index a node with some meta data
lemdb.index(key, 'My Fridge Temp');
// create a recorder which will write data to the node
var temp = lemdb.recorder(key);
// write a value every second
setInterval(function(){
temp(Math.random()*100);
}, 1000)
timestamps
When values are written to recorders - they are timestamped. Sometimes - more acurate timestamping (like a GPS source) is used - you can provide the timestamp to the recorder:
var temp = lemdb.recorder('timestamp.test');
setInterval(function(){
// get a custom timestamp from somewhere - the current time is the default
var timestamp = new Date().getTime();
temp(Math.random()*100, timestamp);
}, 1000)
index
You can read the index from any point in the tree - it returns a ReadStream of the keys that have been indexed:
...
var through = require('through');
// index a key into the tree
lemdb.index('cars.red5.speed', 'The speed of the car', function(){
var keysfound = {};
// keys returns a readstream of objects each with a 'key' and 'data' property
lemdb.keys('cars.red5').pipe(through(function(data){
keysfound[data.key] = data.value;
}, function(){
console.log('Meta: ' + keysfound.speed);
})
})
This will log:
Meta: The speed of the car
valuestream
Create a ReadStream of telemetry values for a node - you can specify start and end keys to view windows in time:
// create a range - this can be a 'session' to make meaningful groups within lem
var sessionstart = new Date('04/05/2013 12:34:43');
var sessionend = new Date('04/05/2013 12:48:10');
var counter = 0;
var total = 0;
var secs = (sessionend.getTime() - sessionstart.getTime()) / 1000;
lemdb.valuestream('cars.red5.speed', {
start:sessionstart.getTime(),
end:sessionend.getTime()
}).pipe(through(function(data){
// this is the timestamp of the value
var key = data.key;
// this is the actual value
var value = data.value;
// map-reduce beginnings
total += value;
counter++;
}, function(){
var avg = 0;
if(counter>0){
avg = total / counter;
}
console.log('average speed of: ' + avg);
console.log('data points: ' + total);
console.log('time period: ' + secs + ' secs');
}))
api
var lemdb = lem(leveldb);
Create a new lem database from the provided leveldb. This can be a level-sublevel so you can partition lem into an existing database.
var lem = require('lem');
var level = require('level');
var leveldb = level('/tmp/mylem');
var lemdb = lem(leveldb);
lemdb.index(path, meta, [done])
Write a node and some meta data to the index.
The index is used to build a tree of key-values that exist without having to traverse the time-stamped keys.
The stream returned can be used to build any kind of data structure you want (list, tree, etc).
The meta data for each node is saved as a string - you can use your own encoding (e.g. JSON).
Create some indexes:
lemdb.index('myhouse.kitchen.fridge.temperature', '{"title":"Fridge Temp","owner":344}');
lemdb.index('myhouse.kitchen.thermostat.temperature', '{"title":"Stat Temp","owner":344}');
lemdb.keys(path)
keys returns a ReadStream of all keys in the index beneath the key you provide.
For example - convert the stream into a tree representing all nodes in the kitchen:
...
var through = require('through');
var tree = {};
lemdb.keys('myhouse.kitchen').pipe(through(function(data){
tree[data.key] = data.value;
}, function(){
console.dir(tree);
}))
This outputs:
{
"fridge.temperature":'{"title":"Fridge Temp","owner":344}',
"thermostat.temperature":'{"title":"Stat Temp","owner":344}'
}
lemdb.recorder(path)
A recorder is used to write time-series data to a node.
You create it with the path of the node:
var recorder = lemdb.recorder('myhouse.kitchen.fridge.temperature');
recorder(value, [timestamp], [done])
The recorder itself is a function that you run with a value and optional timestamp and callback.
If no timestamp is provided a default is created:
var timestamp = new Date().getTime();
The callback is run once the value has been committed to disk:
// a function to get an accurate time-stamp from somewhere
function getProperTime(){
return ...;
}
// a function to return the current value of an external sensor
function getSensorValue(){
return ...;
}
var recorder = lemdb.recorder('myhouse.kitchen.fridge.temperature');
// sample the value every second
setInterval(function(){
var value = getSensorValue();
var timestamp = getProperTime();
recorder(value, timestamp, function(){
console.log(timestamp + ':' + value);
})
}, 1000)
events
lemdb.on('index', function(key, meta){})
the 'index' event is emitted when a node is added to the index:
lemdb.on('index', function(key, meta){
console.log('the key is: ' + key);
// the meta is a string
var obj = JSON.parse(meta);
console.dir(obj);
})
lemdb.on('data', function(key, value){})
This is a livestream from leveldb and so contains a full description of the operation:
lemdb.on('index', function(data){
console.dir(data);
})
This would log:
{ type: 'put',
key: 'values~cars~red5~speed~1394886656496',
value: '85'
}
license
MIT