npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

kd-tree-javascript

v1.0.3

Published

A basic but super fast JavaScript implementation of the k-dimensional tree data structure.

Downloads

41,403

Readme

k-d Tree JavaScript Library

A basic but super fast JavaScript implementation of the k-dimensional tree data structure.

As of version 1.01, the library is defined as an UMD module (based on https://github.com/umdjs/umd/blob/master/commonjsStrict.js).

In computer science, a k-d tree (short for k-dimensional tree) is a space-partitioning data structure for organizing points in a k-dimensional space. k-d trees are a useful data structure for several applications, such as searches involving a multidimensional search key (e.g. range searches and nearest neighbor searches). k-d trees are a special case of binary space partitioning trees.

Demos

  • Spiders - animated multiple nearest neighbour search
  • Google Map - show nearest 20 out of 3000 markers on mouse move
  • Colors - search color names based on color space distance
  • Mutable - dynamically add and remove nodes

Usage

Using global exports

When you include the kd-tree script via HTML, the global variables kdTree and BinaryHeap will be exported.

// Create a new tree from a list of points, a distance function, and a
// list of dimensions.
var tree = new kdTree(points, distance, dimensions);

// Query the nearest *count* neighbours to a point, with an optional
// maximal search distance.
// Result is an array with *count* elements.
// Each element is an array with two components: the searched point and
// the distance to it.
tree.nearest(point, count, [maxDistance]);

// Insert a new point into the tree. Must be consistent with previous
// contents.
tree.insert(point);

// Remove a point from the tree by reference.
tree.remove(point);

// Get an approximation of how unbalanced the tree is.
// The higher this number, the worse query performance will be.
// It indicates how many times worse it is than the optimal tree.
// Minimum is 1. Unreliable for small trees.
tree.balanceFactor();

Using RequireJS

requirejs(['path/to/kdTree.js'], function (ubilabs) {
	// Create a new tree from a list of points, a distance function, and a
	// list of dimensions.
	var tree = new ubilabs.kdTree(points, distance, dimensions);

	// Query the nearest *count* neighbours to a point, with an optional
	// maximal search distance.
	// Result is an array with *count* elements.
	// Each element is an array with two components: the searched point and
	// the distance to it.
	tree.nearest(point, count, [maxDistance]);

	// Insert a new point into the tree. Must be consistent with previous
	// contents.
	tree.insert(point);

	// Remove a point from the tree by reference.
	tree.remove(point);

	// Get an approximation of how unbalanced the tree is.
	// The higher this number, the worse query performance will be.
	// It indicates how many times worse it is than the optimal tree.
	// Minimum is 1. Unreliable for small trees.
	tree.balanceFactor();
});

Example

var points = [
  {x: 1, y: 2},
  {x: 3, y: 4},
  {x: 5, y: 6},
  {x: 7, y: 8}
];

var distance = function(a, b){
  return Math.pow(a.x - b.x, 2) +  Math.pow(a.y - b.y, 2);
}

var tree = new kdTree(points, distance, ["x", "y"]);

var nearest = tree.nearest({ x: 5, y: 5 }, 2);

console.log(nearest);

About

Developed at Ubilabs. Released under the MIT Licence.

Analytics