k.m.c
v1.0.0
Published
This is a simple and easy-to-use implementation of the Machine Learning/Data Mining "k-Means Clustering" algorithm
Downloads
7
Maintainers
Readme
k-Means Clustering algorithm
This is an easy-to-use micro Node module that executes a kMC algorithm.
Current version: 1.0.0
Using
The module that you require in your code is the constructor of the kMC algorithm. This constructor takes one argument - the training data.
In order to launch the algorithm, use the launch function that takes 1 arguments - the k parameter - and returns an array with k cells(/clusters' centroids), each cell contains the coordinates of each point.
You can make multiple calculations by calling the "launch" function several times, with a different k.
Example
kMC = require("k.m.c");
var data = [ [831.5057004801929,20.94387263059616], [233.54505538009107,839.1174518037587], [216.1489767022431,84.10955290310085], [88.05029629729688,556.3338084612042], [955.1495676860213,290.3501314576715], [142.24169682711363,402.54066442139447], [958.026215666905,320.58246061205864], [742.53158015199,741.3020394742489], [538.1446806713939,683.4578807465732], [779.578068992123,913.3474384434521], [141.01124368607998,575.2535695210099], [388.96284252405167,155.98149900324643], [920.3229683917016,438.62350517883897], [754.2438684031367,109.24571333453059], [701.6594938468188,867.3292847815901], [492.28791892528534,807.7459882479161], [688.1855016108602,882.351509295404], [70.47889195382595,697.4109904840589], [645.9282780997455,979.2583852540702], [396.22214436531067,666.6961333248764], [124.61378099396825,727.8992859646678], [173.6428402364254,789.7877844516188], [7.922745775431395,998.4288401901722], [230.3757017944008,608.7657823227346], [526.3460397254676,874.9168538488448], [270.817409735173,962.9022600129247], [357.60940075851977,890.8500513061881], [252.55131744779646,697.131423978135], [640.9155752044171,776.4615404885262], [266.86861319467425,703.2744907774031], [656.8251149728894,612.5200381502509], [750.8503696881235,875.0766385346651], [689.9876575917006,697.8443607222289], [161.2866793293506,994.5784988813102] ];
var example = new kMC(data);
var results = example.launch(3);
console.log(results);