npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

jsontableschema

v0.2.3

Published

A utility library for working with JSON Table Schema in Javascript.

Downloads

74

Readme

JSON Table Schema

Gitter Travis Build Status Coverage Status

A utility library for working with JSON Table Schema in Javascript.

Version v0.2.0 has renewed API introduced in NOT backward-compatibility manner. Previous version could be found here.

Table of Contents

Installation
Components

  • Schema - a javascript model of a JSON Table Schema with useful methods for interaction
  • Field - a javascript model of a JSON Table Schema field
  • Infer - a utility that creates a JSON Table Schema based on a data sample
  • Validate - a utility to validate a schema as valid according to the current spec
  • Table
    Goals
    Contributing

Installation

npm install jsontableschema

Library requires Promise to work properly, and need to be sure that Promise available globally. You are free to choose any Promise polyfill.

Components

Let's look at each of the components in more detail.

Schema

A model of a schema with helpful methods for working with the schema and supported data. Schema instances can be initialized with a schema source as a url to a JSON file or a JSON object. The schema is initially validated (see validate below), and will raise an exception if not a valid JSON Table Schema.

var Schema = require('jsontableschema').Schema;
var model = new Schema('http://someurl.com/remote.json')

or

var model = new Schema({JSON OBJECT})

instance always returns Promise

model.then(function(schema) {
    // working code to use schema model
    var fields = schema.fields;
   
}).catch(function(error) {
    // something went wrong and error variable has explanations
})

Following methods are available on Schema instances:

  • castRow(items, failFast = false, skipConstraints = false) - convert the arguments given to the types of the current schema 1
  • descriptor - JSON representation of Schema description
  • fields - returns an array of Field instances of the schema's fields
  • foreignKeys - returns the foreign key property for the schema
  • getField(fieldName, index = 0) - returns an instance of Field by field name (fieldName) 2
  • hasField(fieldName) - checks if the field exists in the schema by it's name. Returns a boolean
  • headers - returns an array of the schema headers
  • primaryKey - returns the primary key field for the schema as an array
  • save(path) - saves the schema JSON to provided local path. Returns Promise

1 Where the option failFast is given, it will raise the first error it encounters, otherwise an array of errors thrown (if there are any errors occur)
2 Where the optional index argument is available, it can be used as a positional argument if the schema has multiple fields with the same name

Field

Class represents field in the Schema

  • castValue(value, skipConstraints) - returns a value cast against the type of the field and it's constraints 1
  • constraints - returns the constraints object for a given fieldName
  • format - returns the format of the field
  • name - returns the name of the field
  • required - returns boolean
  • testValue(value, skipConstraints) - returns boolean after a check if value can be casted against the type of the field and it's constraints 1
  • type - returns the type of the field

1 Skip constraints if set to false, will check all the constraints set for field while casting or testing the value

Field types

Data values can be cast to native Javascript types. Casting a value will check the value is of the expected type, is in the correct format, and complies with any constraints imposed by a schema.

{
    'name': 'birthday',
    'type': 'date',
    'format': 'default',
    'constraints': {
        'required': True,
        'minimum': '2015-05-30'
    }
}

Following code will not raise the exception, despite the fact our date is less than minimum constraints in the field, because we do not check constraints of the field descriptor

var dateType = field.castValue('2014-05-29')

And following example will raise exception, because we set flag 'skip constraints' to false, and our date is less than allowed by minimum constraints of the field. Exception will be raised as well in situation of trying to cast non-date format values, or empty values

try {
    var dateType = field.castValue('2014-05-29', false)
} catch(e) {
    // uh oh, something went wrong
}

Values that can't be cast will raise an Error exception.
Casting a value that doesn't meet the constraints will raise an Error exception.
Note: the unique constraint is not currently supported.

Available types, formats and resultant value of the cast:

| Type | Formats | Casting result | | ---- | ------- | -------------- | | string | default1, uri, email, binary | String | | integer | default | Number | | number | default, currency | Number2 | | boolean | default | Boolean | | array | default | Array | | object | default | Object | | date | default, any, fmt | Date object | | time | default, any, fmt | Date object | | datetime | default, any, fmt | Date object | | geopoint | default, array, object | Accordingly to format3 | | geojson | default, topojson | Accordingly to format3,4 |

1 default format can be not specified in the field descriptor
2 in case value has 00 after point (1.00), it will return Number(1).toFixed(2), which is actually String '1.00'
3 default format returns String
4 topojson is not implemented

Infer

Given headers and data, infer will return a JSON Table Schema as a JSON object based on the data values. Given the data file, example.csv:

id,age,name
1,39,Paul
2,23,Jimmy
3,36,Jane
4,28,Judy

Call infer with headers and values from the datafile:

var parse = require('csv-parse');
var fs = require('fs');
var infer = require('jsontableschema').infer;

fs.readFile('/path/to/example.csv', function(err, data) {
  parse(data, function(error, values) {
    var headers = values.shift()
        , schema = infer(headers, values);
  });
});

The schema variable is now a JSON object:

{
  fields: [
    {
      name: 'id',
      title: '',
      description: '',
      type: 'integer',
      format: 'default'
    },
    {
      name: 'age',
      title: '',
      description: '',
      type: 'integer',
      format: 'default'
    },
    {
      name: 'name',
      title: '',
      description: '',
      type: 'string',
      format: 'default'
    }
  ]
}

It possible to provide additional options to build the JSON schema as 3rd argument of infer function. It is an object with following possible values:

  • rowLimit (integer) - limit number of rows used by infer
  • explicit (boolean) - add required constraints to fields
  • primaryKey (string, array) - add primary key constraints
  • cast (object) - object with cast instructions for types in the schema. For example:
var parse = require('csv-parse');
var fs = require('fs');
var infer = require('jsontableschema').infer;

fs.readFile('/path/to/example.csv', function(err, data) {
  parse(data, function(error, values) {
    var headers = values.shift(),
        options = {
          rowLimit: 2,
          explicit: true,
          primaryKey: ['id', 'name'],
          cast: {
            string : { format : 'email' },
            number : { format : 'currency' },
            date: { format : 'any'}
          } 
        },
        schema = infer(headers, values, options);
  });
});

The schema variable will look as follow:

{
  fields: [
    {
      name: 'id',
      title: '',
      description: '',
      type: 'integer',
      format: 'default',
      required: true
    },
    {
      name: 'age',
      title: '',
      description: '',
      type: 'integer',
      format: 'default',
      required: true
    },
    {
      name: 'name',
      title: '',
      description: '',
      type: 'string',
      format: 'default',
      required: true
    }
  ],
  primaryKey: ['id', 'name']
}

In this example:

rowLimit: only two rows of values from example.csv will be proceed to set field type. It can be useful in cases when data in CSV file is not normalized and values type can be different in each row. Consider following example:

id,age,name
1,39,Paul
2,23,Jimmy
3,thirty six,Jane
four,28,Judy

In this case by limiting rows to 2, we can build schema structure with correct field types

cast: every string value will be casted using email format, number will be tried as a currency format, and date - as any format

Validate

Given a schema as JSON object, validate returns Promise, which success for a valid JSON Table Schema, or reject with array of errors.

var validate = require('jsontableschema').validate;
var schema = {
   fields: [
     {
       name: 'id',
       title: '',
       description: '',
       type: 'integer',
       format: 'default'
     },
     {
       name: 'age',
       title: '',
       description: '',
       type: 'integer',
       format: 'default'
     },
     {
       name: 'name',
       title: '',
       description: '',
       type: 'string',
       format: 'default'
     }
   ]
};

validate(schema).then(function() {
  // do something with valid schema here
}).catch(function(errors) {
  // uh oh, some validation errors in the errors array
})

Note: validate() validates whether a schema is a validate JSON Table Schema accordingly to the (specifications)[http://schemas.datapackages.org/json-table-schema.json]. It does not validate data against a schema.

Table

A javascript model of a table (schema+source of data)

Instance always returns Promise. In case if schema object is not valid, it will reject promise.

Source of data can be:

  • array of objects with values, represent the rows
  • local CSV file
  • remote CSV file (URL)
  • readable stream

Following methods are available on Table instances:

  • iter(callback, failFast, skipConstraints)1,2 - iterate through the given dataset provided in constructor and returns converted data
  • read(keyed, extended, limit) - Read part or full source into array.
    • keyed: row looks like {header1: value1, header2: value2}
    • extended: row looks like [row_number, [header1, header2], [value1, value2]].
      • Low-level usage: when you need all information about row from stream but there is no guarantee that it is not malformed. For example, in goodtables you cannot use keyed because there is no guarantee that it will not fail - https://github.com/frictionlessdata/goodtables-py/blob/master/goodtables/inspector.py#L205
      • High-level usage: useful when you need to get row + row number. This row number is exact row number of source stream row. It's not like counted or similar. So if you skip first 9 rows using skipRows first row number from iter(extended=True) will be 10. It's not possible to get this information on client code level using other approach - iter() index in this case will start from 0.
    • limit: limt the number of rows return to limit
  • save(path) - Save source to file locally in CSV format with , (comma) delimiter. Returns Promise

1 If failFast is set to true, it will raise the first error it encounters, otherwise an array of errors thrown (if there are any errors occur). Default is false
2 Skip constraints if set to true, will check all the constraints set for field while casting or testing the value. Default is false

var jts = require('jsontableschema');
var Table = jts.Table;

var model = new Table({SCHEMA}, {SOURCE})
var callback = function(items) {
    // ... do something with converted items
    // iter method convert values row by row from the source
}
model.then(function (table) {
    table.iter(callback, true, false).then(function() {
          // ... do something when conversion of all data from source is finished 
    }, function (errors) {
          // something went wrong while casting values from source
          // errors is array with explanations
    })
}, function(error) {
    // Table can't instantiate for some reason
    // see error for details
})

Goals

  • A core set of utilities for working with JSON Table Schema
  • Use in other packages that deal with actual validation of data, or other 'higher level' use cases around JSON Table Schema (e.g. Tabular Validator)
  • Be 100% compliant with the the JSON Table Schema specification (we are not there yet)

Contributing

Please read the contribution guideline:

How to Contribute

Thanks!