jsmachinelearning
v1.0.1
Published
Popular algorithms of machine learning are made available
Downloads
4
Maintainers
Readme
MLJavaScript
All popular Machine Learning algorithms are made available in this repository.
Prerequisites
Node.js, matrix_deep_clone, jsnumpy.
Installing
$ npm install jsmachinelearning
Algorithms.
Multiple Linear Regression.
> var MLAlgorithms = require('jsmachinelearning');
> var model = new MLAlgorithms.MultipleLinearRegression();
> x = [
[1, 2],
[4, 2],
[6, 3],
[2, 3],
[5, 1]
]
> y=[1,2,3,2,5];
> model.fit(x,y);
> var k = model.predict([ [1, 2], [4, 2] ])
> console.log(k);
[ 0.2285865948088468, 1.8311543879819048 ]
NOTE : MultipleLinearRegression
function provides a model using which we can train on data with more then one feature vector. In the above example we are having two feature vector in X. It can also be used to predict the value for the unknown data.
Simple Linear Regression
> var model = new MLAlgorithms.SimpleLinearRegression();
> x = [2,3,4,5,6];
> y = [1,2,3,2,5];
> model.fit(x,y)
> k = model.predict([2,4,5]);
> console.log(k);
[ 1, 2.6, 3.4 ];
NOTE : SimpleLinearRegression
provides a model for training on data with single feature vector. It can also predict value for unknown sample.
Additional Methods
Train test split
> var data = [
[1, 43, 2],
[3, 32, 4],
[5, 13, 6],
[7, 44, 8]
]
> var [train, test] = mlAlgorithms.train_test_split(data, train_ratio = 0.5);
> console.log(train);
[
[1, 43, 2],
[3, 32, 4]
]
> console.log(test);
[
[7, 44, 8],
[5, 13, 6]
]
NOTE: train_test_split
function divides the data in the train_ratio mentioned. The default value for train_ratio is 0.75 i.e. 75 percent of the data becomes training and 25 percent data becomes test data. The data is not selected in sequential order but instead it is randomized so that proper predication can be made based on the data.
Separate feature and target data
> var data = [
[1, 43, 2],
[3, 32, 4],
[5, 13, 6],
[7, 44, 8]
]
> var [x, y] = mlAlgorithms.get_X_And_Y(data);
> console.log(x);
[
[1, 43],
[3, 32],
[5, 13],
[7, 44]
]
> console.log(y);
[2, 4, 6, 8]
NOTE : get_X_And_Y
function returns feature vector and target variable Separated. The function assumes the last column of the data has target variable and first n-1 column has feature vector.
Authors
- Nikhil Ashodariya -(https://github.com/NikhilAshodariya)
License
This project is licensed under the MIT License