js-svm
v1.0.4
Published
Package implements linear svm and kernel svm that supports binary and mult-class classification
Downloads
256
Maintainers
Readme
js-svm
Package provides javascript implementation of linear SVM and SVM with gaussian kernel
Features
- Support for binary classification
- Support for multi-class classification
Install
npm install js-svm
Usage
SVM Binary Classifier
The sample code below show how to use SVM binary classifier on the iris datsets to classify whether a data row belong to species Iris-virginica:
var jssvm = require('js-svm');
var iris = require('js-datasets-iris');
var svm = new jssvm.BinarySvmClassifier();
iris.shuffle();
var trainingDataSize = Math.round(iris.rowCount * 0.9);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
var row = [];
row.push(iris.data[i][0]); // sepalLength;
row.push(iris.data[i][1]); // sepalWidth;
row.push(iris.data[i][2]); // petalLength;
row.push(iris.data[i][3]); // petalWidth;
row.push(iris.data[i][4] == "Iris-virginica" ? 1.0 : 0.0); // output which is 1 if species is Iris-virginica; 0 otherwise
if(i < trainingDataSize){
trainingData.push(row);
} else {
testingData.push(row);
}
}
var result = svm.fit(trainingData);
console.log(result);
for(var i=0; i < testingData.length; ++i){
var predicted = svm.transform(testingData[i]);
console.log("actual: " + testingData[i][4] + " predicted: " + predicted);
}
To configure the BinarySvmClassifier, use the following code when it is created:
var svm = new jssvm.BinarySvmClassifier({
alpha: 0.01, // learning rate
iterations: 1000, // maximum iterations
C: 5.0, // panelty term
trace: false // debug tracing
});
Multi-Class Classification using One-vs-All Logistic Regression
The sample code below illustrates how to run the multi-class classifier on the iris datasets to classifiy the species of each data row:
var jssvm = require('js-svm');
var iris = require('js-datasets-iris');
var classifier = new jssvm.MultiClassSvmClassifier();
iris.shuffle();
var trainingDataSize = Math.round(iris.rowCount * 0.9);
var trainingData = [];
var testingData = [];
for(var i=0; i < iris.rowCount ; ++i) {
var row = [];
row.push(iris.data[i][0]); // sepalLength;
row.push(iris.data[i][1]); // sepalWidth;
row.push(iris.data[i][2]); // petalLength;
row.push(iris.data[i][3]); // petalWidth;
row.push(iris.data[i][4]); // output is species
if(i < trainingDataSize){
trainingData.push(row);
} else {
testingData.push(row);
}
}
var result = classifier.fit(trainingData);
console.log(result);
for(var i=0; i < testingData.length; ++i){
var predicted = classifier.transform(testingData[i]);
console.log("svm prediction testing: actual: " + testingData[i][4] + " predicted: " + predicted);
}
To configure the MultiClassSvmClassifier, use the following code when it is created:
var classifier = new jssvm.MultiClassSvmClassifier({
alpha: 0.01, // learning rate
iterations: 1000, // maximum iterations
C: 5.0 // panelty term
sigma: 1.0 // the standard deviation for the gaussian kernel
});
Switch between linear and guassian kernel
By default the kernel used by the binary and multi-class classifier is "linear" which can be printed by:
console.log(classifier.kernel);
To switch to use gaussian kernel, put the property 'kernel: "gaussian"' in the config data when the classifier is created:
var svm = new jssvm.BinarySvmClassifier({
...,
kernel: 'gaussian'
});
....
var svm = new jssvm.MultiClassSvmClassifier({
...,
kernel: 'gaussian'
});
Usage In HTML
Include the "node_modules/js-svm/build/jssvm.min.js" (or "node_modules/js-svm/src/jssvm.js") in your HTML <script> tag
The demo code in HTML can be found in the following files within the package: