js-mat
v1.6.0
Published
JavaScript library for Matrix representation
Downloads
51
Maintainers
Readme
js-mat
JavaScript library for representation and mathematical operations using matrix
Usage
Import the package as:
import {mat} from '../mat/Mat'
Create a matrix of random values:
var M: mat.Matrix = mat.rand(3,3); // create a 3x3 matrix
Create a null matrix:
var M: mat.Matrix = mat.zeros(2,5); // create a 2x5 null matrix
Create a matrix of ones:
var M: mat.Matrix = mat.ones(2,2) // create a 2x2 matrix of ones
Create an identity matrix:
var I: mat.Matrix = mat.eye(4); // identity matrix of size 4x4
Create a matrix from a 2D array:
// We show you two ways of doing it
// Using constructor
var M: mat.matrix = new mat.Matrix([
[1,2,3],
[4,5,6],
[7,8,9]
]);
// Using the matrix function
var M: mat.Matrix = mat.matrix([
[1,2,3],
[4,5,6],
[7,8,9]
]);
Create a matrix from another matrix
var M1: mat.Matrix = mat.rand(3,6);
var M2: mat.Matrix = new mat.Matrix(M1); // equal to M1
Operations
Addition:
var M1 = new Matrix([
[12,7,9],
[5,-2,3]
]);
var M2 = new Matrix([
[-3.6, 0, 5.4],
[-12,-2,7]
]);
var result = M1.add(M2);
// [8.4, 7, 14.4]
// [-7, -4, -10]
Substraction:
var M1 = new Matrix([
[12,7,9],
[5,-2,3]
]);
var M2 = new Matrix([
[-3.6, 0, 5.4],
[-12,-2,7]
]);
var result = M1.subtract(M2); // M1.diff(M2) also works
// [15.6, 7.0, 3.6]
// [17.0, 0, -4.0]
Multiplication:
// Multiply two matrices
var M1 = new Matrix([
[1, 2, 9],
[-3, 7, 1]
]);
var M2 = new Matrix([
[-5, 1],
[3, 12],
[1, 1]
]);
var result = M1.multiply(M2); // M1.dot(M2) also works
// [10, 34]
// [37, 82]
// Multiply a matrix by a constant
var M1 = new Matrix([
[1, 2, 9],
[-3, 7, 1]
]);
var result = M1.multiply(5);
// [5, 10, 45]
// [-15, 35, 5]
Determinant:
var M = new Matrix([
[5, -2, 2, 7],
[1, 0, 0, 3],
[-3, 1, 5, 0],
[3, -1, -9, 4]
]);
M.det(); // returns 88
Inverse:
var M = new Matrix([
[5, -2, 2, 7],
[1, 0, 0, 3],
[-3, 1, 5, 0],
[3, -1, -9, 4]
]);
M.inv();
// [-0.1364, 0.8636, -0.6818, -0.4091]
// [-0.6364, 2.3636, -0.9318, -0.6591]
// [0.0455, 0.0455, -0.0227, -0.1136]
// [0.0455, 0.0455, 0.2273, 0.1364]
Transpose:
var M = new Matrix([
[5, -2, 2, 7],
[1, 0, 0, 3],
[-3, 1, 5, 0]
]);
M.T; // or also M.transpose()
// [5, 1, -3]
// [-2, 0, 1]
// [2, 0, 5]
// [7, 3, 0]
Cofactor Matrix:
var M = new Matrix([
[5, -2, 2, 7],
[1, 0, 0, 3],
[-3, 1, 5, 0],
[3, -1, -9, 4]
]);
M.cof();
// [-12, -56, 4, 4]
// [76, 208, 4, 4]
// [-60, -82, -2, 20]
// [-36, -58, -10, 12]
Adjoint:
var M = new Matrix([
[5, -2, 2, 7],
[1, 0, 0, 3],
[-3, 1, 5, 0],
[3, -1, -9, 4]
]);
M.adj();
// [ -12, 76, -60, -36 ]
// [ -56, 208, -82, -58 ]
// [ 4, 4, -2, -10 ]
// [ 4, 4, 20, 12 ]
Minor:
// Calculate the determinant when removing the given row and column indexes
var M = new Matrix([
[5, -2, 2, 7],
[1, 0, 0, 3],
[-3, 1, 5, 0],
[3, -1, -9, 4]
]);
M.minor(0,1); // returns 56
And more matrix operations including:
- Horizontal concatenation:
M1.horzcat(M2)
- Vetical concatenation:
M1.vertcat(M2)
- Add row:
M.addRow(row)
- Add column:
M.addColumn(column)
- Remove row:
M.deleteRow(index)
- Delete column:
M.deleteColumn(index)
- Compare:
M1.equals(M2)
- map/apply:
M.map(x => x**2), M.apply(x => x**2)
- arange:
Matrix.arange(2, 10, 0.5)
- linspace:
Matrix.linspace(0, 10, 100)
- reshape:
M.reshape([2,3])
- flatten/ravel:
M.flatten(), M.ravel()
- diag:
M.diag()
Examples
- Solve a system of linear equations using Least Squares method
- Find the roots of a system of equations using Newton-Raphson method
- Perform Linear Regression method
- Perform Logistic Regression Note: There are a lot more examples. but we highlights the ones that implements a lot of the functionalities mentioned above