npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

js-like-numbers

v1.0.0

Published

A small, fast JavaScript library for arbitrary-precision decimal arithmetic in javascript notation.

Downloads

1

Readme

JS-Like-Numbers

Currently Supported for ES6 and higher

A small, fast JavaScript library for arbitrary-precision decimal arithmetic in javascript notation.

npm version npm downloads github issues

Install

$ npm install js-like-numbers

Usage

CommonJS:

const { op } = require('js-like-numbers')

ES module:

import { op } from 'js-like-numbers'

You need to pass to op a function with returned aritmetic operation or a number

const val = op(() => 1)
const val2 = op(() => (
    10000000000000000000000000000000000000000000
    + 55555555555555555555555
    + 111111111111.7891919191919191919191111111111111111
))

console.log(val.toString()) // 1
console.log(String(val2)) // 10000000000000000000055555555555666666666666.7891919191919191919191111111111111111

As you see You can work with any numbers in javascript notation.

Functions passed to op can also be fat functions:

const val = op(function f() {
    return 128931823123712839213 % 13213212312
})

console.log(val.valueOf()) // 449923381

Requirement: Your return statements MUST consists of arithmetic operations and include ONLY identifiers (variables) refering to BigNumbers as values:

const val = op(() => 1)
const result1 = op(() => (1 + val * 10) / val ** (2 + val)) // Is Correct

const incorrectVal = 1
const result2 = op(() => 1 + incorrectVal) // Error: You can use in return statement only variables initialized with BigNumber values

Requirement: op call body MUST contain only simple arithmetics (not related to BigNumbers), declarations of BigNumbers, or another op calls.

Requirement: Type castings of BigNumbers in op functions bodies MUST be performed using BigNumber.cast method.

const simpleNum = 2
const num1 = op(() => 1)
const result = op(function f() {
  const simpleMath = 16 + 2 / simpleNum
  const num2 = op(() => (num1 + num1) ** 2)
  const num3 = new BigNumber(simpleMath + '')
  // const bigNumberStringCasting = num3.toString() // This is not allowed, it can lead to logical errors.
  const validCasting = num3.cast('number')
  
  return num2 + 12 + num1 + (-num3) // 0
})

When you use exponentiation operation (**), be sure to pass as a second operand integer number between -1e+6 to 1e+6 inclusive.

const num1 = op(() => 2 ** 2) // 4
const num2 = op(() => 2 ** 2.1) // Error: Invalid exponent: Exponent must be a JavaScript number integer in range - -1e+6 to 1e+6 inclusive

When calculating modulo, result will be a value of first number modulo n, i.e. the integer remainder of dividing it by n.

The result will have the same sign as the first operand, and it will match that of JavaScript's % operator (within the limits of its precision) and BigDecimal's remainder method.

It will Throw if n is zero or otherwise invalid.

const num1 = op(() => 10 % 6) // 4
const num2 = op(() => -10 % 6) // -4
const num2 = op(() => -10 % -6) // -4

const num1 = op(() => -1 % 0.9) // -0.1
const num2 = op(() => 1 % -0.9) // 0.1
const num3 = op(() => -0 % 2) // -0

For comparison you have 5 methods on BigNumber instances:

  • eq:
    const num1 = op(() => 1)
    const num2 = op(() => num1)
    console.log(num1.eq(num2)) // true
    console.log(num1.eq(1)) // true
    console.log(num1.eq('1')) // true
  • gt:
    const num1 = op(() => 1)
    const num2 = op(() => num1 - 1)
    console.log(num1.gt(num2)) // true
    console.log(num1.gt(0)) // true
    console.log(num1.gt('0')) // true
  • gte:
    const num1 = op(() => 1)
    console.log(num1.gte(num1)) // true
    console.log(num1.gte(1)) // true
    console.log(num1.gte('1')) // true
  • lt:
    const num1 = op(() => 1)
    const num2 = op(() => num1 - 1)
    console.log(num1.lt(num2)) // false
    console.log(num1.lt(0)) // false
    console.log(num1.lt('0')) // false
  • lte:
    const num1 = op(() => 1)
    const num2 = op(() => num1 - 1)
    console.log(num1.lte(num2)) // false
    console.log(num1.lte(1)) // true
    console.log(num1.lte('2')) // true

There are 2 additional methods, toFixed and toPrecision:

toFixed

Returns a string representing the value of this BigNumber in normal notation to a fixed number of decimal places.

Decimal places number must be integer from 0 to 1e+6 inclusive.

const num = op(() => 1.5451)
num.toFixed() // 1.5451 - same value in normal notation
num.toFixed(0) // 2 - rounded to closest integer
num.toFixed(1) // 1.5
num.toFixed(2) // 1.55
num.toFixed(3) // 1.545
num.toFixed(4) // 1.5451
num.toFixed(5) // 1.54510
num.toFixed(6) // 1.545100
num.toFixed(-1) // Error: Invalid argument decimalPlaces provided
num.toFixed(1e+6 + 1) // Error: Invalid argument decimalPlaces provided

toPrecision

Returns a string representing the value of this BigNumber to the specified number of significant digits.

Precision number must be integer from 1 to 1e+6 inclusive

const num = op(() => 1.5451)
num.toPrecision() // 1.5451 - same value in normal notation
num.toPrecision(1) // 2
num.toPrecision(2) // 1.5
num.toPrecision(3) // 1.55
num.toPrecision(4) // 1.545
num.toPrecision(5) // 1.5451
num.toPrecision(6) // 1.54510
num.toPrecision(-1) // Error: Invalid precision provided
num.toPrecision(1e+6 + 1) // Error: Invalid precision provided
num.toPrecision(0) // Error: Invalid precision provided

License

MIT