npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

js-graph-algorithms

v1.0.18

Published

Package implements data structures and algorithms for processing various types of graphs

Downloads

172,552

Readme

js-graph-algorithms

Package provides javascript implementation of algorithms for graph processing

Build Status Coverage Status

Features

  • Depth First Search (Link: HTML DEMO)
  • Breadth First Search
  • Connected Components for undirected graph (Link: HTML DEMO)
  • Topoloical Sort (Link: HTML DEMO)
  • Strongly Connected Components for directed graph (Link: HTML DEMO)
  • Minimum Spanning Tree for weighted graph (Kruskal, Prim Lazy, Prim Eager) (Link: HTML DEMO)
  • Shortest Paths (Dijkstra, Bellman-Ford, Topological Sort on DAG) (Link: HTML DEMO)
  • MaxFlow-MinCut (Ford-Fulkerson) (Link: HTML DEMO)

Install

npm install js-graph-algorithms

Usage

Create an undirected unweighted graph

The sample code below shows how to create a undirected and unweighted graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');

var g = new jsgraphs.Graph(6); // 6 is the number vertices in the graph
g.addEdge(0, 5); // add undirected edge connecting vertex 0 to vertex 5
g.addEdge(2, 4);
g.addEdge(2, 3);
g.addEdge(1, 2);
g.addEdge(0, 1);
g.addEdge(3, 4);
g.addEdge(3, 5);
g.addEdge(0, 2);

g.node(2).label = 'Hello'; // assigned 'Hello' as label for node 2
g.edge(0, 2).label = 'World'; // edge between 0 and 2

console.log(g.V); // display 6, which is the number of vertices in g
console.log(g.adj(0)); // display [5, 1, 2], which is the adjacent list to vertex 0

Create directed unweighted graph

The sample code below shows how to create a direted and unweighted graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');

var g = new jsgraphs.DiGraph(13); // 13 is the number vertices in the graph
g.addEdge(4,  2); // add directed edge from 4 to 2
g.addEdge(2,  3);
g.addEdge(3,  2);
g.addEdge(6,  0);
g.addEdge(0,  1);
g.addEdge(2,  0);
g.addEdge(11, 12);
g.addEdge(12,  9);
g.addEdge(9, 10);
g.addEdge(9, 11);
g.addEdge(7,  9);
g.addEdge(10, 12);
g.addEdge(11,  4);
g.addEdge(4,  3);
g.addEdge(3,  5);
g.addEdge(6,  8);
g.addEdge(8,  6);
g.addEdge(5,  4);
g.addEdge(0,  5);
g.addEdge(6,  4);
g.addEdge(6,  9);
g.addEdge(7,  6);

g.node(2).label = 'Hello'; // assign 'Hello' as label for node 2
g.edge(0, 5).label = 'World'; // edge from 0 to 5

console.log(g.V); // display 13, which is the number of vertices in g
console.log(g.adj(0)); // display the adjacency list which are vertices directed from vertex 0

Create undirected weighted graph

The sample code below shows show to create undirected weighted graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedGraph(8); // 8 is the number vertices in the graph
g.addEdge(new jsgraphs.Edge(0, 7, 0.16));
g.addEdge(new jsgraphs.Edge(2, 3, 0.17));
g.addEdge(new jsgraphs.Edge(1, 7, 0.19));
g.addEdge(new jsgraphs.Edge(0, 2, 0.26));
g.addEdge(new jsgraphs.Edge(5, 7, 0.28));
g.addEdge(new jsgraphs.Edge(1, 3, 0.29));
g.addEdge(new jsgraphs.Edge(1, 5, 0.32));
g.addEdge(new jsgraphs.Edge(2, 7, 0.34));
g.addEdge(new jsgraphs.Edge(4, 5, 0.35));
g.addEdge(new jsgraphs.Edge(1, 2, 0.36));
g.addEdge(new jsgraphs.Edge(4, 7, 0.37));
g.addEdge(new jsgraphs.Edge(0, 4, 0.38));
g.addEdge(new jsgraphs.Edge(6, 2, 0.4));
g.addEdge(new jsgraphs.Edge(3, 6, 0.52));
g.addEdge(new jsgraphs.Edge(6, 0, 0.58));
g.addEdge(new jsgraphs.Edge(6, 4, 0.93));

g.node(2).label = 'Hello'; // assign 'Hello' as label for node 2
g.edge(4, 5).label = 'World'; // edge between node 4 and 5

console.log(g.V); // display 13, which is the number of vertices in g
console.log(g.adj(0)); // display the adjacency list which are undirected edges connected to vertex 0

Create directed weighted graph

The sample code below shows show to create directed weighted graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedDiGraph(8); // 8 is the number vertices in the graph
g.addEdge(new jsgraphs.Edge(0, 7, 0.16));
g.addEdge(new jsgraphs.Edge(2, 3, 0.17));
g.addEdge(new jsgraphs.Edge(1, 7, 0.19));
g.addEdge(new jsgraphs.Edge(0, 2, 0.26));
g.addEdge(new jsgraphs.Edge(5, 7, 0.28));
g.addEdge(new jsgraphs.Edge(1, 3, 0.29));
g.addEdge(new jsgraphs.Edge(1, 5, 0.32));
g.addEdge(new jsgraphs.Edge(2, 7, 0.34));
g.addEdge(new jsgraphs.Edge(4, 5, 0.35));
g.addEdge(new jsgraphs.Edge(1, 2, 0.36));
g.addEdge(new jsgraphs.Edge(4, 7, 0.37));
g.addEdge(new jsgraphs.Edge(0, 4, 0.38));
g.addEdge(new jsgraphs.Edge(6, 2, 0.4));
g.addEdge(new jsgraphs.Edge(3, 6, 0.52));
g.addEdge(new jsgraphs.Edge(6, 0, 0.58));
g.addEdge(new jsgraphs.Edge(6, 4, 0.93));

g.node(2).label = 'Hello';
g.edge(4, 5).label = 'World'; // edge from node 4 to node 5

console.log(g.V); // display 13, which is the number of vertices in g
console.log(g.adj(0)); // display the adjacency list which are directed edges from vertex 0

Depth First Search

The sample code below show how to perform depth first search of an undirected graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');

var g = new jsgraphs.Graph(6);
g.addEdge(0, 5);
g.addEdge(2, 4);
g.addEdge(2, 3);
g.addEdge(1, 2);
g.addEdge(0, 1);
g.addEdge(3, 4);
g.addEdge(3, 5);
g.addEdge(0, 2);
var s = 0;
var dfs = new jsgraphs.DepthFirstSearch(g, s);


for(var v=0; v < g.V; ++v) {
 if(dfs.hasPathTo(v)) {
    console.log(s + " is connected to " + v);
    console.log("path: " + dfs.pathTo(v));
 } else {
     console.log('No path from ' + s + ' to ' + v);
 }
} 

Connected Components

The sample code below show how to obtain the number of connected components in an undirected graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');

var g = new jsgraphs.Graph(13);
g.addEdge(0, 5);
g.addEdge(4, 3);
g.addEdge(0, 1);
g.addEdge(9, 12);
g.addEdge(6, 4);
g.addEdge(5, 4);
g.addEdge(0, 2);
g.addEdge(11, 12);
g.addEdge(9,10);
g.addEdge(0, 6);
g.addEdge(7, 8);
g.addEdge(9, 11);
g.addEdge(5, 3); 

var cc = new jsgraphs.ConnectedComponents(g);
console.log(cc.componentCount()); // display 3
for (var v = 0; v < g.V; ++v) {
    console.log('id[' + v + ']: ' + cc.componentId(v));
}

Topological Sort

The sample code below show how to obtain the reverse post order of a topological sort in a directed acyclic graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');

var dag = new jsgraphs.DiGraph(7); // must be directed acyclic graph

dag.addEdge(0, 5);
dag.addEdge(0, 2);
dag.addEdge(0, 1);
dag.addEdge(3, 6);
dag.addEdge(3, 5);
dag.addEdge(3, 4);
dag.addEdge(5, 4);
dag.addEdge(6, 4);
dag.addEdge(6, 0);
dag.addEdge(3, 2);
dag.addEdge(1, 4);

var ts = new jsgraphs.TopologicalSort(dag);

var order = ts.order();
console.log(order); // display array which is the topological sort order

Strongly Connected Components for Directed Graph

The sample code below show how to obtain the strongly connected components from a directed graph (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');

var graph = new jsgraphs.DiGraph(13);
graph.addEdge(4, 2);
graph.addEdge(2, 3);
graph.addEdge(3, 2);
graph.addEdge(6, 0);
graph.addEdge(0, 1);
graph.addEdge(2, 0);
graph.addEdge(11, 12);
graph.addEdge(12, 9);
graph.addEdge(9, 10);
graph.addEdge(9, 11);
graph.addEdge(8, 9);
graph.addEdge(10, 12);
graph.addEdge(11, 4);
graph.addEdge(4, 3);
graph.addEdge(3, 5);
graph.addEdge(7, 8);
graph.addEdge(8, 7);
graph.addEdge(5, 4);
graph.addEdge(0, 5);
graph.addEdge(6, 4);
graph.addEdge(6, 9);
graph.addEdge(7, 6);
var scc = new jsgraphs.StronglyConnectedComponents(graph);
console.log(scc.componentCount()); // display 5
for (var v = 0; v < graph.V; ++v) {
    console.log('id[' + v + ']: ' + scc.componentId(v));
}

Use Kruskal algorithm to find the minimum spanning tree of a weighted graph

The sample code below show how to obtain the minimum spanning tree from a weighted graph using Kruskal algorithm (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedGraph(8);

g.addEdge(new jsgraphs.Edge(0, 7, 0.16));
g.addEdge(new jsgraphs.Edge(2, 3, 0.17));
g.addEdge(new jsgraphs.Edge(1, 7, 0.19));
g.addEdge(new jsgraphs.Edge(0, 2, 0.26));
g.addEdge(new jsgraphs.Edge(5, 7, 0.28));
g.addEdge(new jsgraphs.Edge(1, 3, 0.29));
g.addEdge(new jsgraphs.Edge(1, 5, 0.32));
g.addEdge(new jsgraphs.Edge(2, 7, 0.34));
g.addEdge(new jsgraphs.Edge(4, 5, 0.35));
g.addEdge(new jsgraphs.Edge(1, 2, 0.36));
g.addEdge(new jsgraphs.Edge(4, 7, 0.37));
g.addEdge(new jsgraphs.Edge(0, 4, 0.38));
g.addEdge(new jsgraphs.Edge(6, 2, 0.4));
g.addEdge(new jsgraphs.Edge(3, 6, 0.52));
g.addEdge(new jsgraphs.Edge(6, 0, 0.58));
g.addEdge(new jsgraphs.Edge(6, 4, 0.93));

var kruskal = new jsgraphs.KruskalMST(g); 
var mst = kruskal.mst;
for(var i=0; i < mst.length; ++i) {
    var e = mst[i];
    var v = e.either();
    var w = e.other(v);
    console.log('(' + v + ', ' + w + '): ' + e.weight);
}

Use Lazy Prim algorithm to find the minimum spanning tree of a weighted graph

The sample code below show how to obtain the minimum spanning tree from a weighted graph using Lazy Prim algorithm (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedGraph(8);

g.addEdge(new jsgraphs.Edge(0, 7, 0.16));
g.addEdge(new jsgraphs.Edge(2, 3, 0.17));
g.addEdge(new jsgraphs.Edge(1, 7, 0.19));
g.addEdge(new jsgraphs.Edge(0, 2, 0.26));
g.addEdge(new jsgraphs.Edge(5, 7, 0.28));
g.addEdge(new jsgraphs.Edge(1, 3, 0.29));
g.addEdge(new jsgraphs.Edge(1, 5, 0.32));
g.addEdge(new jsgraphs.Edge(2, 7, 0.34));
g.addEdge(new jsgraphs.Edge(4, 5, 0.35));
g.addEdge(new jsgraphs.Edge(1, 2, 0.36));
g.addEdge(new jsgraphs.Edge(4, 7, 0.37));
g.addEdge(new jsgraphs.Edge(0, 4, 0.38));
g.addEdge(new jsgraphs.Edge(6, 2, 0.4));
g.addEdge(new jsgraphs.Edge(3, 6, 0.52));
g.addEdge(new jsgraphs.Edge(6, 0, 0.58));
g.addEdge(new jsgraphs.Edge(6, 4, 0.93));

var prim = new jsgraphs.LazyPrimMST(g); 
var mst = prim.mst;
for(var i=0; i < mst.length; ++i) {
    var e = mst[i];
    var v = e.either();
    var w = e.other(v);
    console.log('(' + v + ', ' + w + '): ' + e.weight);
}

Use Eager Prim algorithm to find the minimum spanning tree of a weighted graph

The sample code below show how to obtain the minimum spanning tree from a weighted graph using Eager Prim algorithm (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedGraph(8);

g.addEdge(new jsgraphs.Edge(0, 7, 0.16));
g.addEdge(new jsgraphs.Edge(2, 3, 0.17));
g.addEdge(new jsgraphs.Edge(1, 7, 0.19));
g.addEdge(new jsgraphs.Edge(0, 2, 0.26));
g.addEdge(new jsgraphs.Edge(5, 7, 0.28));
g.addEdge(new jsgraphs.Edge(1, 3, 0.29));
g.addEdge(new jsgraphs.Edge(1, 5, 0.32));
g.addEdge(new jsgraphs.Edge(2, 7, 0.34));
g.addEdge(new jsgraphs.Edge(4, 5, 0.35));
g.addEdge(new jsgraphs.Edge(1, 2, 0.36));
g.addEdge(new jsgraphs.Edge(4, 7, 0.37));
g.addEdge(new jsgraphs.Edge(0, 4, 0.38));
g.addEdge(new jsgraphs.Edge(6, 2, 0.4));
g.addEdge(new jsgraphs.Edge(3, 6, 0.52));
g.addEdge(new jsgraphs.Edge(6, 0, 0.58));
g.addEdge(new jsgraphs.Edge(6, 4, 0.93));

var prim = new jsgraphs.EagerPrimMST(g); 
var mst = prim.mst;
for(var i=0; i < mst.length; ++i) {
    var e = mst[i];
    var v = e.either();
    var w = e.other(v);
    console.log('(' + v + ', ' + w + '): ' + e.weight);
}

Find the shortest paths using Dijkstra

The sample code below show how to obtain the shortest paths from a starting point 0 on a weighted directed graph using Dijkstra (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedDiGraph(8);
g.addEdge(new jsgraphs.Edge(0, 1, 5.0));
g.addEdge(new jsgraphs.Edge(0, 4, 9.0));
g.addEdge(new jsgraphs.Edge(0, 7, 8.0));
g.addEdge(new jsgraphs.Edge(1, 2, 12.0));
g.addEdge(new jsgraphs.Edge(1, 3, 15.0));
g.addEdge(new jsgraphs.Edge(1, 7, 4.0));
g.addEdge(new jsgraphs.Edge(2, 3, 3.0));
g.addEdge(new jsgraphs.Edge(2, 6, 11.0));
g.addEdge(new jsgraphs.Edge(3, 6, 9.0));
g.addEdge(new jsgraphs.Edge(4, 5, 5.0));
g.addEdge(new jsgraphs.Edge(4, 6, 20.0));
g.addEdge(new jsgraphs.Edge(4, 7, 5.0));
g.addEdge(new jsgraphs.Edge(5, 2, 1.0));
g.addEdge(new jsgraphs.Edge(5, 6, 13.0));
g.addEdge(new jsgraphs.Edge(7, 5, 6.0));
g.addEdge(new jsgraphs.Edge(7, 2, 7.0));  


var dijkstra = new jsgraphs.Dijkstra(g, 0);

for(var v = 1; v < g.V; ++v){
    if(dijkstra.hasPathTo(v)){
        var path = dijkstra.pathTo(v);
        console.log('=====path from 0 to ' + v + ' start==========');
        for(var i = 0; i < path.length; ++i) {
            var e = path[i];
            console.log(e.from() + ' => ' + e.to() + ': ' + e.weight);
        }
        console.log('=====path from 0 to ' + v + ' end==========');
        console.log('=====distance: '  + dijkstra.distanceTo(v) + '=========');
    }
}

Find the shortest paths using Bellman-Ford

The sample code below show how to obtain the shortest paths from a starting point 0 on a weighted directed graph using Bellman-Ford:

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedDiGraph(8);
g.addEdge(new jsgraphs.Edge(0, 1, 5.0));
g.addEdge(new jsgraphs.Edge(0, 4, 9.0));
g.addEdge(new jsgraphs.Edge(0, 7, 8.0));
g.addEdge(new jsgraphs.Edge(1, 2, 12.0));
g.addEdge(new jsgraphs.Edge(1, 3, 15.0));
g.addEdge(new jsgraphs.Edge(1, 7, 4.0));
g.addEdge(new jsgraphs.Edge(2, 3, 3.0));
g.addEdge(new jsgraphs.Edge(2, 6, 11.0));
g.addEdge(new jsgraphs.Edge(3, 6, 9.0));
g.addEdge(new jsgraphs.Edge(4, 5, 5.0));
g.addEdge(new jsgraphs.Edge(4, 6, 20.0));
g.addEdge(new jsgraphs.Edge(4, 7, 5.0));
g.addEdge(new jsgraphs.Edge(5, 2, 1.0));
g.addEdge(new jsgraphs.Edge(5, 6, 13.0));
g.addEdge(new jsgraphs.Edge(7, 5, 6.0));
g.addEdge(new jsgraphs.Edge(7, 2, 7.0));  


var bf = new jsgraphs.BellmanFord(g, 0);

for(var v = 1; v < g.V; ++v){
    if(bf.hasPathTo(v)){
        var path = bf.pathTo(v);
        console.log('=====path from 0 to ' + v + ' start==========');
        for(var i = 0; i < path.length; ++i) {
            var e = path[i];
            console.log(e.from() + ' => ' + e.to() + ': ' + e.weight);
        }
        console.log('=====path from 0 to ' + v + ' end==========');
        console.log('=====distance: '  + bf.distanceTo(v) + '=========');
    }
}

Find the shortest paths using Topological Sort Shortest Paths

The sample code below show how to obtain the shortest paths from a starting point 0 on a weighted directed acylic graph using Topological Sort:

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.WeightedDiGraph(8);
g.addEdge(new jsgraphs.Edge(0, 1, 5.0));
g.addEdge(new jsgraphs.Edge(0, 4, 9.0));
g.addEdge(new jsgraphs.Edge(0, 7, 8.0));
g.addEdge(new jsgraphs.Edge(1, 2, 12.0));
g.addEdge(new jsgraphs.Edge(1, 3, 15.0));
g.addEdge(new jsgraphs.Edge(1, 7, 4.0));
g.addEdge(new jsgraphs.Edge(2, 3, 3.0));
g.addEdge(new jsgraphs.Edge(2, 6, 11.0));
g.addEdge(new jsgraphs.Edge(3, 6, 9.0));
g.addEdge(new jsgraphs.Edge(4, 5, 5.0));
g.addEdge(new jsgraphs.Edge(4, 6, 20.0));
g.addEdge(new jsgraphs.Edge(4, 7, 5.0));
g.addEdge(new jsgraphs.Edge(5, 2, 1.0));
g.addEdge(new jsgraphs.Edge(5, 6, 13.0));
g.addEdge(new jsgraphs.Edge(7, 5, 6.0));
g.addEdge(new jsgraphs.Edge(7, 2, 7.0));  


var bf = new jsgraphs.TopologicalSortShortestPaths(g, 0);

for(var v = 1; v < g.V; ++v){
    if(bf.hasPathTo(v)){
        var path = bf.pathTo(v);
        console.log('=====path from 0 to ' + v + ' start==========');
        for(var i = 0; i < path.length; ++i) {
            var e = path[i];
            console.log(e.from() + ' => ' + e.to() + ': ' + e.weight);
        }
        console.log('=====path from 0 to ' + v + ' end==========');
        console.log('=====distance: '  + bf.distanceTo(v) + '=========');
    }
}

Find the MaxFlow-MinCut using Ford-Fulkerson algorithm

The sample code below show how to obtain the MaxFlow-MinCut of a directed weighted graph using ford-fulkerson algorithm (Link: HTML DEMO):

var jsgraphs = require('js-graph-algorithms');
var g = new jsgraphs.FlowNetwork(8);
g.addEdge(new jsgraphs.FlowEdge(0, 1, 10));
g.addEdge(new jsgraphs.FlowEdge(0, 2, 5));
g.addEdge(new jsgraphs.FlowEdge(0, 3, 15));
g.addEdge(new jsgraphs.FlowEdge(1, 4, 9));
g.addEdge(new jsgraphs.FlowEdge(1, 5, 15));
g.addEdge(new jsgraphs.FlowEdge(1, 2, 4));
g.addEdge(new jsgraphs.FlowEdge(2, 5, 8));
g.addEdge(new jsgraphs.FlowEdge(2, 3, 4));
g.addEdge(new jsgraphs.FlowEdge(3, 6, 16));
g.addEdge(new jsgraphs.FlowEdge(4, 5, 15));
g.addEdge(new jsgraphs.FlowEdge(4, 7, 10));
g.addEdge(new jsgraphs.FlowEdge(5, 7, 10));
g.addEdge(new jsgraphs.FlowEdge(5, 6, 15));
g.addEdge(new jsgraphs.FlowEdge(6, 2, 6));
g.addEdge(new jsgraphs.FlowEdge(6, 7, 10)); 

g.node(2).label = 'Hello';
g.edge(0, 1).label = 'World';

var source = 0;
var target = 7;
var ff = new jsgraphs.FordFulkerson(g, source, target);
console.log('max-flow: ' + ff.value);

var minCut = ff.minCut(g);

for(var i = 0; i < minCut.length; ++i) {
    var e = minCut[i];
    console.log('min-cut: (' + e.from() + ", " + e.to() + ')');
}