npm package discovery and stats viewer.

Discover Tips

  • General search

    [free text search, go nuts!]

  • Package details

    pkg:[package-name]

  • User packages

    @[username]

Sponsor

Optimize Toolset

I’ve always been into building performant and accessible sites, but lately I’ve been taking it extremely seriously. So much so that I’ve been building a tool to help me optimize and monitor the sites that I build to make sure that I’m making an attempt to offer the best experience to those who visit them. If you’re into performant, accessible and SEO friendly sites, you might like it too! You can check it out at Optimize Toolset.

About

Hi, 👋, I’m Ryan Hefner  and I built this site for me, and you! The goal of this site was to provide an easy way for me to check the stats on my npm packages, both for prioritizing issues and updates, and to give me a little kick in the pants to keep up on stuff.

As I was building it, I realized that I was actually using the tool to build the tool, and figured I might as well put this out there and hopefully others will find it to be a fast and useful way to search and browse npm packages as I have.

If you’re interested in other things I’m working on, follow me on Twitter or check out the open source projects I’ve been publishing on GitHub.

I am also working on a Twitter bot for this site to tweet the most popular, newest, random packages from npm. Please follow that account now and it will start sending out packages soon–ish.

Open Software & Tools

This site wouldn’t be possible without the immense generosity and tireless efforts from the people who make contributions to the world and share their work via open source initiatives. Thank you 🙏

© 2024 – Pkg Stats / Ryan Hefner

jolt-physics

v0.29.0

Published

A WebAssembly port of JoltPhysics, a rigid body physics and collision detection library, suitable for games and VR applications

Downloads

1,246

Readme

Version Downloads Bundle Size Build Status

JoltPhysics.js

This project enables using Jolt Physics in JavaScript.

Demos

Go to the demos page to see the project in action.

Using

This library comes in 5 flavours:

  • wasm-compat - A WASM version with the WASM file (encoded in base64) embedded in the bundle
  • wasm - A WASM version with a separate WASM file
  • asm - A JavaScript version that uses asm.js
  • wasm-compat-multithread - Same as wasm-compat but with multi threading enabled.
  • wasm-multithread - Same as wasm but with multi threading enabled.

See falling_shapes.html for an example on how to use the library.

Documentation

The interface of the library is the same as the C++ interface of JoltPhysics, this means that you can use the C++ documentation as reference.

Almost the entire Jolt interface has been exposed. Check JoltJS.idl if a particular interface has been exposed. If not, edit JoltJS.idl and JoltJS.h and send a pull request, or open an issue.

Installation

This library is distributed as ECMAScript modules on npm:

npm install jolt-physics

The different flavours are available via entrypoints on the npm package:

// WASM embedded in the bundle
import Jolt from 'jolt-physics';
import Jolt from 'jolt-physics/wasm-compat';

// WASM
import Jolt from 'jolt-physics/wasm';

// asm.js
import Jolt from 'jolt-physics/asm';

// WASM embedded in the bundle, multithread enabled
import Jolt from 'jolt-physics/wasm-compat-multithread';

// WASM, multithread enabled
import Jolt from 'jolt-physics/wasm-multithread';

You can also import esm bundles with unpkg:

<script type="module">
    // import latest
    import Jolt from 'https://www.unpkg.com/jolt-physics/dist/jolt-physics.wasm-compat.js';

    // or import a specific version
    import Jolt from 'https://www.unpkg.com/[email protected]/dist/jolt-physics.wasm-compat.js';
</script>

Where x.y.z is the version of the library you want to use.

Using the WASM flavour

To use the wasm flavour, you must either serve the WASM file jolt-physics.wasm.wasm alongside jolt-physics.wasm.js, or use a bundler that supports importing an asset as a url, and tell Jolt where to find the WASM file.

To specify where to retrieve the WASM file from, you can pass a locateFile function to the default export of jolt-physics/wasm. For example, using vite this would look like:

import initJolt from "jolt-physics";
import joltWasmUrl from "jolt-physics/jolt-physics.wasm.wasm?url";

const Jolt = await initJolt({
  locateFile: () => joltWasmUrl,
});

For more information on the locateFile function, see the Emscripten documentation.

Building

This project has only been compiled under Linux.

  • Install emscripten and ensure that its environment variables have been setup
  • Install cmake
  • Run ./build.sh Distribution for the optimized build, ./build.sh Debug for the debug build.

Additional options that can be provided to build.sh:

  • -DENABLE_MEMORY_PROFILER=ON will enable memory tracking to detect leaks.
  • -DDOUBLE_PRECISION=ON will enable the double precision mode. This allows worlds larger than a couple of km.
  • -DENABLE_SIMD=ON will enable SIMD instructions. Safari 16.4 was the last major browser to support this (in March 2023).
  • -DBUILD_WASM_COMPAT_ONLY=ON speeds up the build by only compiling the WASM compat version which the examples use.

Running

By default the examples use the WASM compat version of Jolt. This requires serving the html file using a web server rather than opening the html file directly.

Open a terminal in this folder and run the following commands:

npm install
npm run examples

Then navigate to: http://localhost:3000/

If you need to debug the C++ code take a look at WASM debugging.

Memory Management

The samples are very bad at cleaning up after themselves (basically they don't). When using emscripten to port a library to WASM, nothing is cleaned up automatically, so everything you newed with new Jolt.XXX needs to be destroyed by Jolt.destroy(...).

On top of this, Jolt uses reference counting for a number of its classes (everything that inherits from RefTarget). The most important classes are:

  • ShapeSettings
  • Shape
  • ConstraintSettings
  • Constraint
  • PhysicsMaterial
  • GroupFilter
  • SoftBodySharedSettings
  • VehicleCollisionTester
  • VehicleController
  • WheelSettings
  • CharacterBaseSettings
  • CharacterBase

Reference counting objects start with a reference count of 0. If you want to keep ownership over the object, you need to call object.AddRef(), this will increment the reference count. If you want to release ownership you call object.Release(), this will decrement the reference count and if the reference count reaches 0 the object will be destroyed. If, after newing, you pass a reference counted object on to another object (e.g. a ShapeSettings to a CompoundShapeSettings or a Shape to a Body) then that other object will take a reference, in that case it is not needed take a reference yourself beforehand so you can skip the calls to AddRef/Release. Note that it is also possible to do new Jolt.XXX followed by Jolt.destroy(...) for a reference counted object if no one took a reference.

The Body class is also a special case, it is destroyed through BodyInterface.DestroyBody(body.GetID()) (which internally destroys the Body).

Almost everything else can be destroyed straight after it has been passed to Jolt. An example that shows how to properly clean up using Jolt is here.

Projects using JoltPhysics.js

License

The project is distributed under the MIT license.